skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Deceleration of High-velocity Interstellar Photon Sails into Bound Orbits at α Centauri

Abstract

At a distance of about 4.22 ly, it would take about 100,000 years for humans to visit our closest stellar neighbor Proxima Centauri using modern chemical thrusters. New technologies are now being developed that involve high-power lasers firing at 1 gram solar sails in near-Earth orbits, accelerating them to 20% the speed of light ( c ) within minutes. Although such an interstellar probe could reach Proxima 20 years after launch, without propellant to slow it down it would traverse the system within hours. Here we demonstrate how the stellar photon pressures of the stellar triple α Cen A, B, and C (Proxima) can be used together with gravity assists to decelerate incoming solar sails from Earth. The maximum injection speed at α Cen A to park a sail with a mass-to-surface ratio ( σ ) similar to graphene (7.6 × 10{sup −4} gram m{sup −2}) in orbit around Proxima is about 13,800 km s{sup −1} (4.6% c ), implying travel times from Earth to α Cen A and B of about 95 years and another 46 years (with a residual velocity of 1280 km s{sup −1}) to Proxima. The size of such a low- σ sail required to carrymore » a payload of 10 grams is about 10{sup 5} m{sup 2} = (316 m){sup 2}. Such a sail could use solar photons instead of an expensive laser system to gain interstellar velocities at departure. Photogravitational assists allow visits of three stellar systems and an Earth-sized potentially habitable planet in one shot, promising extremely high scientific yields.« less

Authors:
 [1];  [2]
  1. Max Planck Institute for Solar System Research Justus-von-Liebig-Weg 3, 37077 Göttingen (Germany)
  2. Luiter Straße 21b, 47506 Neukirchen-Vluyn (Germany)
Publication Date:
OSTI Identifier:
22654551
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal Letters; Journal Volume: 835; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ACCELERATION; EXPLOSIVES; GAIN; GRAVITATION; INJECTION; MASS; ORBITS; PHOTONS; PLANETS; RECREATIONAL AREAS; SAILS; SPACE; SPACE VEHICLES; STARS; SURFACES; THRUSTERS; VELOCITY; VISIBLE RADIATION

Citation Formats

Heller, René, and Hippke, Michael, E-mail: heller@mps.mpg.de, E-mail: hippke@ifda.eu. Deceleration of High-velocity Interstellar Photon Sails into Bound Orbits at α Centauri. United States: N. p., 2017. Web. doi:10.3847/2041-8213/835/2/L32.
Heller, René, & Hippke, Michael, E-mail: heller@mps.mpg.de, E-mail: hippke@ifda.eu. Deceleration of High-velocity Interstellar Photon Sails into Bound Orbits at α Centauri. United States. doi:10.3847/2041-8213/835/2/L32.
Heller, René, and Hippke, Michael, E-mail: heller@mps.mpg.de, E-mail: hippke@ifda.eu. Wed . "Deceleration of High-velocity Interstellar Photon Sails into Bound Orbits at α Centauri". United States. doi:10.3847/2041-8213/835/2/L32.
@article{osti_22654551,
title = {Deceleration of High-velocity Interstellar Photon Sails into Bound Orbits at α Centauri},
author = {Heller, René and Hippke, Michael, E-mail: heller@mps.mpg.de, E-mail: hippke@ifda.eu},
abstractNote = {At a distance of about 4.22 ly, it would take about 100,000 years for humans to visit our closest stellar neighbor Proxima Centauri using modern chemical thrusters. New technologies are now being developed that involve high-power lasers firing at 1 gram solar sails in near-Earth orbits, accelerating them to 20% the speed of light ( c ) within minutes. Although such an interstellar probe could reach Proxima 20 years after launch, without propellant to slow it down it would traverse the system within hours. Here we demonstrate how the stellar photon pressures of the stellar triple α Cen A, B, and C (Proxima) can be used together with gravity assists to decelerate incoming solar sails from Earth. The maximum injection speed at α Cen A to park a sail with a mass-to-surface ratio ( σ ) similar to graphene (7.6 × 10{sup −4} gram m{sup −2}) in orbit around Proxima is about 13,800 km s{sup −1} (4.6% c ), implying travel times from Earth to α Cen A and B of about 95 years and another 46 years (with a residual velocity of 1280 km s{sup −1}) to Proxima. The size of such a low- σ sail required to carry a payload of 10 grams is about 10{sup 5} m{sup 2} = (316 m){sup 2}. Such a sail could use solar photons instead of an expensive laser system to gain interstellar velocities at departure. Photogravitational assists allow visits of three stellar systems and an Earth-sized potentially habitable planet in one shot, promising extremely high scientific yields.},
doi = {10.3847/2041-8213/835/2/L32},
journal = {Astrophysical Journal Letters},
number = 2,
volume = 835,
place = {United States},
year = {Wed Feb 01 00:00:00 EST 2017},
month = {Wed Feb 01 00:00:00 EST 2017}
}
  • This paper revisits some content in the First International Symposium on Beamed Energy Propulsion in 2002 related to the concept of propellantless in-space propulsion utilizing an external high energy laser to provide momentum to an ultralightweight (gossamer) spacecraft. The design and construction of the NanoSail-D solar sail demonstration spacecraft has demonstrated in space flight hardware the concept of small, very light--yet capable--spacecraft. The results of the Joint High Power Solid State Laser (JHPSSL) have also increased the effectiveness and reduced the cost of an entry level laser source. This paper identifies the impact from improved system parameters on current missionmore » applications.« less
  • We identified a previously unassigned pair of lines between 169 and 170 Å in the coronae of cool stars. Here, we attribute these lines to Fe xiv and show that their intensity ratio is sensitive to the electron density. Using observations taken with the Low Energy Transmission Grating Spectrometer of the Chandra X-ray Observatory we infer a density of log (n e/cm -3) = 10.2 ± 0.7 and 10.3 ± 0.8 from the newly identified line pair in the coronae of Procyon and α Cen A, respectively.
  • We have identified a previously unassigned pair of lines between 169 and 170 Å in the coronae of cool stars. We attribute these lines to Fe xiv and show that their intensity ratio is sensitive to the electron density. Using observations taken with the Low Energy Transmission Grating Spectrometer of the Chandra X-ray Observatory we infer a density of log(n{sub e}/cm{sup −3})  =  10.2 ± 0.7 and 10.3 ± 0.8 from the newly identified line pair in the coronae of Procyon and α Cen A, respectively.
  • Employing new infrared radial velocities, we have computed orbits of the cool giants in three southern S-type symbiotic systems. The orbit for V1044 Cen, an M5.5 giant, has a period of 985 days and a modest eccentricity of 0.16. Hen 3-1213 is a K4 giant, yellow symbiotic with an orbital period of 533 days and a similar eccentricity of 0.18. For the M2 giant SS 73-96 the orbital period is 828 days, and this system has a somewhat larger eccentricity of 0.26. Measurement of the H i Paschen δ emission lines, which may at least partially reflect the motion ofmore » the secondary in SS 73-96, results in a mass ratio of 2.4 for the M giant relative to the presumed white dwarf. The estimated orbital inclinations of V1044 Cen and Hen 3-1213 are low, about 40°. However, for SS 73-96 the predicted inclination is 90°, and so an ephemeris for eclipses of the secondary or the hot nebula surrounding it is provided. A search of the orbital velocity residuals of V1044 Cen and SS 73-96 for pulsation periods produced no realistic or convincing period for either star.« less
  • The following is a progress report on the long-term coronal (T ∼ 1 MK) activity of α Centauri A (HD 128620: G2 V) and B (HD 128621: K1 V). Since 2005, Chandra X-Ray Observatory has carried out semiannual pointings on AB, mainly with the High Resolution Camera, but also on two occasions with the Low-Energy Transmission Grating Spectrometer, fully resolving the close pair in all cases. During 2008-2013, Chandra captured the rise, peak, and initial decline of B's coronal luminosity. Together with previous high states documented by ROSAT and XMM-Newton, the long-term X-ray record suggests a period of 8.1 ±more » 0.2 yr, compared to 11 yr for the Sun, with a minimum-to-peak contrast of 4.5, about half the typical solar cycle amplitude. Meanwhile, the A component has been mired in a Maunder-Minimum-like low state since 2005, initially recognized by XMM-Newton. But now, A finally appears to be climbing out of the extended lull. If interpreted simply as an overlong cycle, the period would be 19.2 ± 0.7 yr, with a minimum-to-peak contrast of 3.4. The short X-ray cycle of B, and possibly long cycle of A, are not unusual compared with the diverse (albeit much lower amplitude) chromospheric variations recorded, for example, by the HK Project. Further, the deep low state of A also is not unusual, but instead is similar to the L {sub X}/L {sub bol} of the Sun during recent minima of the sunspot cycle.« less