skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Challenges to Constraining Exoplanet Masses via Transmission Spectroscopy

Abstract

MassSpec , a method for determining the mass of a transiting exoplanet from its transmission spectrum alone, was proposed by de Wit and Seager. The premise of this method relies on the planet’s surface gravity being extracted from the transmission spectrum via its effect on the atmospheric scale height, which in turn determines the strength of absorption features. Here, we further explore the applicability of MassSpec to low-mass exoplanets—specifically those in the super-Earth size range for which radial velocity determinations of the planetary mass can be extremely challenging and resource intensive. Determining the masses of these planets is of the utmost importance because their nature is otherwise highly unconstrained. Without knowledge of the mass, these planets could be rocky, icy, or gas-dominated. To investigate the effects of planetary mass on transmission spectra, we present simulated observations of super-Earths with atmospheres made up of mixtures of H{sub 2}O and H{sub 2}, both with and without clouds. We model their transmission spectra and run simulations of each planet as it would be observed with James Webb Space Telescope using the NIRISS, NIRSpec, and MIRI instruments. We find that significant degeneracies exist between transmission spectra of planets with different masses and compositions, makingmore » it impossible to unambiguously determine the planet’s mass in many cases.« less

Authors:
 [1];  [2];  [3]
  1. Department of Astronomy and Astrophysics, Pennsylvania State University, State College, PA 16802 (United States)
  2. Department of Physics, Grinnell College, 1116 8th Avenue, Grinnell, IA 50112 (United States)
  3. Department of Astronomy and Astrophysics, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States)
Publication Date:
OSTI Identifier:
22654548
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal Letters; Journal Volume: 836; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ABSORPTION; GRAVITATION; HYDROGEN; MASS; PLANETS; RADIAL VELOCITY; RESOURCES; SATELLITE ATMOSPHERES; SATELLITES; SCALE HEIGHT; SIMULATION; SPACE; SPECTRA; TELESCOPES; TRANSMISSION

Citation Formats

Batalha, Natasha E., Kempton, Eliza M.-R., and Mbarek, Rostom, E-mail: neb149@psu.edu. Challenges to Constraining Exoplanet Masses via Transmission Spectroscopy. United States: N. p., 2017. Web. doi:10.3847/2041-8213/AA5C7D.
Batalha, Natasha E., Kempton, Eliza M.-R., & Mbarek, Rostom, E-mail: neb149@psu.edu. Challenges to Constraining Exoplanet Masses via Transmission Spectroscopy. United States. doi:10.3847/2041-8213/AA5C7D.
Batalha, Natasha E., Kempton, Eliza M.-R., and Mbarek, Rostom, E-mail: neb149@psu.edu. Fri . "Challenges to Constraining Exoplanet Masses via Transmission Spectroscopy". United States. doi:10.3847/2041-8213/AA5C7D.
@article{osti_22654548,
title = {Challenges to Constraining Exoplanet Masses via Transmission Spectroscopy},
author = {Batalha, Natasha E. and Kempton, Eliza M.-R. and Mbarek, Rostom, E-mail: neb149@psu.edu},
abstractNote = {MassSpec , a method for determining the mass of a transiting exoplanet from its transmission spectrum alone, was proposed by de Wit and Seager. The premise of this method relies on the planet’s surface gravity being extracted from the transmission spectrum via its effect on the atmospheric scale height, which in turn determines the strength of absorption features. Here, we further explore the applicability of MassSpec to low-mass exoplanets—specifically those in the super-Earth size range for which radial velocity determinations of the planetary mass can be extremely challenging and resource intensive. Determining the masses of these planets is of the utmost importance because their nature is otherwise highly unconstrained. Without knowledge of the mass, these planets could be rocky, icy, or gas-dominated. To investigate the effects of planetary mass on transmission spectra, we present simulated observations of super-Earths with atmospheres made up of mixtures of H{sub 2}O and H{sub 2}, both with and without clouds. We model their transmission spectra and run simulations of each planet as it would be observed with James Webb Space Telescope using the NIRISS, NIRSpec, and MIRI instruments. We find that significant degeneracies exist between transmission spectra of planets with different masses and compositions, making it impossible to unambiguously determine the planet’s mass in many cases.},
doi = {10.3847/2041-8213/AA5C7D},
journal = {Astrophysical Journal Letters},
number = 1,
volume = 836,
place = {United States},
year = {Fri Feb 10 00:00:00 EST 2017},
month = {Fri Feb 10 00:00:00 EST 2017}
}
  • A high-statistics measurement of the neutrinos from a galactic core-collapse supernova is extremely important for understanding the explosion mechanism, and studying the intrinsic properties of neutrinos themselves. In this paper, we explore the possibility to constrain the absolute scale of neutrino masses m{sub ν} via the detection of galactic supernova neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO) with a 20 kiloton liquid-scintillator detector. In assumption of a nearly-degenerate neutrino mass spectrum and a normal mass ordering, the upper bound on the absolute neutrino mass is found to be m{sub ν}<(0.83±0.24) eV at the 95% confidence level for a typicalmore » galactic supernova at a distance of 10 kpc, where the mean value and standard deviation are shown to account for statistical fluctuations. For comparison, we find that the bound in the Super-Kamiokande experiment is m{sub ν}<(0.94±0.28) eV at the same confidence level. However, the upper bound will be relaxed when the model parameters characterizing the time structure of supernova neutrino fluxes are not exactly known, and when the neutrino mass ordering is inverted.« less
  • A high-statistics measurement of the neutrinos from a galactic core-collapse supernova is extremely important for understanding the explosion mechanism, and studying the intrinsic properties of neutrinos themselves. In this paper, we explore the possibility to constrain the absolute scale of neutrino masses m{sub ν} via the detection of galactic supernova neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO) with a 20 kiloton liquid-scintillator detector. In assumption of a nearly-degenerate neutrino mass spectrum and a normal mass ordering, the upper bound on the absolute neutrino mass is found to be m{sub ν} < (0.83 ± 0.24) eV at the 95% confidence level for a typical galacticmore » supernova at a distance of 10 kpc, where the mean value and standard deviation are shown to account for statistical fluctuations. For comparison, we find that the bound in the Super-Kamiokande experiment is m{sub ν} < (0.94 ± 0.28) eV at the same confidence level. However, the upper bound will be relaxed when the model parameters characterizing the time structure of supernova neutrino fluxes are not exactly known, and when the neutrino mass ordering is inverted.« less
  • Spectroscopy during planetary transits is a powerful tool to probe exoplanet atmospheres. We present the near-infrared transit spectroscopy of XO-2b obtained with Hubble Space Telescope NICMOS. Uniquely for NICMOS transit spectroscopy, a companion star of similar properties to XO-2 is present in the field of view. We derive improved star and planet parameters through a photometric white-light analysis. We show a clear correlation of the spectrum noise with instrumental parameters, in particular the angle of the spectral trace on the detector. An MCMC method using a decorrelation from instrumental parameters is used to extract the planetary spectrum. Spectra derived independentlymore » from each of the three visits have an rms of 430, 510, and 1000 ppm, respectively. The same analysis is performed on the companion star after numerical injection of a transit with a depth constant at all wavelengths. The extracted spectra exhibit residuals of similar amplitude as for XO-2, which represent the level of remaining NICMOS systematics. This shows that extracting planetary spectra is at the limit of NICMOS's capability. We derive a spectrum for the planet XO-2b using the companion star as a reference. The derived spectrum can be represented by a theoretical model including atmospheric water vapor or by a flat spectrum model. We derive a 3{sigma} upper limit of 1570 ppm on the presence of water vapor absorption in the atmosphere of XO-2b. In the Appendix, we perform a similar analysis for the gas giant planet XO-1b.« less
  • We present high resolution transmission spectra of giant planet atmospheres from a coupled three-dimensional (3D) atmospheric dynamics and transmission spectrum model that includes Doppler shifts which arise from winds and planetary motion. We model Jovian planets covering more than two orders of magnitude in incident flux, corresponding to planets with 0.9-55 day orbital periods around solar-type stars. The results of our 3D dynamical models reveal certain aspects of high resolution transmission spectra that are not present in simple one-dimensional (1D) models. We find that the hottest planets experience strong substellar to anti-stellar (SSAS) winds, resulting in transmission spectra with netmore » blueshifts of up to 3 km s{sup –1}, whereas less irradiated planets show almost no net Doppler shifts. We find only minor differences between transmission spectra for atmospheres with temperature inversions and those without. Compared to 1D models, peak line strengths are significantly reduced for the hottest atmospheres owing to Doppler broadening from a combination of rotation (which is faster for close-in planets under the assumption of tidal locking) and atmospheric winds. Finally, high resolution transmission spectra may be useful in studying the atmospheres of exoplanets with optically thick clouds since line cores for very strong transitions should remain optically thick to very high altitude. High resolution transmission spectra are an excellent observational test for the validity of 3D atmospheric dynamics models, because they provide a direct probe of wind structures and heat circulation. Ground-based exoplanet spectroscopy is currently on the verge of being able to verify some of our modeling predictions, most notably the dependence of SSAS winds on insolation. We caution that interpretation of high resolution transmission spectra based on 1D atmospheric models may be inadequate, as 3D atmospheric motions can produce a noticeable effect on the absorption signatures.« less
  • We present a retrieval method based on Bayesian analysis to infer the atmospheric compositions and surface or cloud-top pressures from transmission spectra of exoplanets with general compositions. In this study, we identify what can unambiguously be determined about the atmospheres of exoplanets from their transmission spectra by applying the retrieval method to synthetic observations of the super-Earth GJ 1214b. Our approach to inferring constraints on atmospheric parameters is to compute their joint and marginal posterior probability distributions using the Markov Chain Monte Carlo technique in a parallel tempering scheme. A new atmospheric parameterization is introduced that is applicable to generalmore » atmospheres in which the main constituent is not known a priori and clouds may be present. Our main finding is that a unique constraint of the mixing ratios of the absorbers and two spectrally inactive gases (such as N{sub 2} and primordial H{sub 2}+ He) is possible if the observations are sufficient to quantify both (1) the broadband transit depths in at least one absorption feature for each absorber and (2) the slope and strength of the molecular Rayleigh scattering signature. A second finding is that the surface pressure or cloud-top pressure can be quantified if a surface or cloud deck is present at low optical depth. A third finding is that the mean molecular mass can be constrained by measuring either the Rayleigh scattering slope or the shapes of the absorption features, thus enabling one to distinguish between cloudy hydrogen-rich atmospheres and high mean molecular mass atmospheres. We conclude, however, that without the signature of molecular Rayleigh scattering-even with robustly detected infrared absorption features (>10{sigma})-there is no reliable way to tell from the transmission spectrum whether the absorber is a main constituent of the atmosphere or just a minor species with a mixing ratio of X{sub abs} < 0.1%. The retrieval method leads us to a conceptual picture of which details in transmission spectra are essential for unique characterizations of well-mixed exoplanet atmospheres.« less