skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dynamical Formation of Low-mass Merging Black Hole Binaries like GW151226

Abstract

Using numerical models for star clusters spanning a wide range in ages and metallicities (Z) we study the masses of binary black holes (BBHs) produced dynamically and merging in the local universe ( z ≲ 0.2). After taking into account cosmological constraints on star formation rate and metallicity evolution, which realistically relate merger delay times obtained from models with merger redshifts, we show here for the first time that while old, metal-poor globular clusters can naturally produce merging BBHs with heavier components, as observed in GW150914, lower-mass BBHs like GW151226 are easily formed dynamically in younger, higher-metallicity clusters. More specifically, we show that the mass of GW151226 is well within 1 σ of the mass distribution obtained from our models for clusters with Z/Z{sub ⊙} ≳ 0.5. Indeed, dynamical formation of a system like GW151226 likely requires a cluster that is younger and has a higher metallicity than typical Galactic globular clusters. The LVT151012 system, if real, could have been created in any cluster with Z/Z{sub ⊙} ≲ 0.25. On the other hand, GW150914 is more massive (beyond 1 σ ) than typical BBHs from even the lowest-metallicity (Z/Z{sub ⊙} = 0.005) clusters we consider, but is within 2 σmore » of the intrinsic mass distribution from our cluster models with Z/Z{sub ⊙} ≲ 0.05; of course, detection biases also push the observed distributions toward higher masses.« less

Authors:
; ; ;  [1]
  1. Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) Physics and Astronomy, Northwestern University, Evanston, IL 60202 (United States)
Publication Date:
OSTI Identifier:
22654534
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal Letters; Journal Volume: 836; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; BINARY STARS; BLACK HOLES; CLUSTER MODEL; DETECTION; EVOLUTION; GALAXIES; GRAVITATIONAL WAVES; LIMITING VALUES; MASS; MASS DISTRIBUTION; METALLICITY; METALS; RED SHIFT; STAR CLUSTERS; STARS; TIME DELAY; UNIVERSE

Citation Formats

Chatterjee, Sourav, Rodriguez, Carl L., Kalogera, Vicky, and Rasio, Frederic A., E-mail: sourav.chatterjee@northwestern.edu. Dynamical Formation of Low-mass Merging Black Hole Binaries like GW151226. United States: N. p., 2017. Web. doi:10.3847/2041-8213/AA5CAA.
Chatterjee, Sourav, Rodriguez, Carl L., Kalogera, Vicky, & Rasio, Frederic A., E-mail: sourav.chatterjee@northwestern.edu. Dynamical Formation of Low-mass Merging Black Hole Binaries like GW151226. United States. doi:10.3847/2041-8213/AA5CAA.
Chatterjee, Sourav, Rodriguez, Carl L., Kalogera, Vicky, and Rasio, Frederic A., E-mail: sourav.chatterjee@northwestern.edu. Mon . "Dynamical Formation of Low-mass Merging Black Hole Binaries like GW151226". United States. doi:10.3847/2041-8213/AA5CAA.
@article{osti_22654534,
title = {Dynamical Formation of Low-mass Merging Black Hole Binaries like GW151226},
author = {Chatterjee, Sourav and Rodriguez, Carl L. and Kalogera, Vicky and Rasio, Frederic A., E-mail: sourav.chatterjee@northwestern.edu},
abstractNote = {Using numerical models for star clusters spanning a wide range in ages and metallicities (Z) we study the masses of binary black holes (BBHs) produced dynamically and merging in the local universe ( z ≲ 0.2). After taking into account cosmological constraints on star formation rate and metallicity evolution, which realistically relate merger delay times obtained from models with merger redshifts, we show here for the first time that while old, metal-poor globular clusters can naturally produce merging BBHs with heavier components, as observed in GW150914, lower-mass BBHs like GW151226 are easily formed dynamically in younger, higher-metallicity clusters. More specifically, we show that the mass of GW151226 is well within 1 σ of the mass distribution obtained from our models for clusters with Z/Z{sub ⊙} ≳ 0.5. Indeed, dynamical formation of a system like GW151226 likely requires a cluster that is younger and has a higher metallicity than typical Galactic globular clusters. The LVT151012 system, if real, could have been created in any cluster with Z/Z{sub ⊙} ≲ 0.25. On the other hand, GW150914 is more massive (beyond 1 σ ) than typical BBHs from even the lowest-metallicity (Z/Z{sub ⊙} = 0.005) clusters we consider, but is within 2 σ of the intrinsic mass distribution from our cluster models with Z/Z{sub ⊙} ≲ 0.05; of course, detection biases also push the observed distributions toward higher masses.},
doi = {10.3847/2041-8213/AA5CAA},
journal = {Astrophysical Journal Letters},
number = 2,
volume = 836,
place = {United States},
year = {Mon Feb 20 00:00:00 EST 2017},
month = {Mon Feb 20 00:00:00 EST 2017}
}
  • The formation of black hole (BH) low-mass X-ray binaries (LMXB) poses a theoretical challenge, as low-mass companions are not expected to survive the common-envelope scenario with the BH progenitor. Here we propose a formation mechanism that skips the common-envelope scenario and relies on triple-body dynamics. We study the evolution of hierarchical triples following the secular dynamical evolution up to the octupole-level of approximation, including general relativity, tidal effects, and post-main-sequence evolution such as mass loss, changes to stellar radii, and supernovae. During the dynamical evolution of the triple system the “eccentric Kozai-Lidov” mechanism can cause large eccentricity excitations in themore » LMXB progenitor, resulting in three main BH-LMXB formation channels. Here we define BH-LMXB candidates as systems where the inner BH-companion star crosses its Roche limit. In the “eccentric” channel (∼81% of the LMXBs in our simulations) the donor star crosses its Roche limit during an extreme eccentricity excitation while still on a wide orbit. Second, we find a “giant” LMXB channel (∼11%), where a system undergoes only moderate eccentricity excitations but the donor star fills its Roche-lobe after evolving toward the giant branch. Third, we identify a “classical” channel (∼8%), where tidal forces and magnetic braking shrink and circularize the orbit to short periods, triggering mass-transfer. Finally, for the giant channel we predict an eccentric (∼0.3–0.6) preferably inclined (∼40°, ∼140°) tertiary, typically on a wide enough orbit (∼10{sup 4} au) to potentially become unbound later in the triple evolution. While this initial study considers only one representative system and neglects BH natal kicks, we expect our scenario to apply across a broad region of parameter space for triple-star systems.« less
  • Certain numerical frameworks used for the evolution of binary black holes make use of a gamma driver, which includes a damping factor. Such simulations typically use a constant value for damping. However, it has been found that very specific values of the damping factor are needed for the calculation of unequal mass binaries. We examine carefully the role this damping plays and provide two explicit, nonconstant forms for the damping to be used with mass ratios further from one. Our analysis of the resultant waveforms compares well against the constant damping case.
  • We recently discovered a population of very young ({tau} {approx}< 6-8 Myr), X-ray emitting black hole binaries (BHBs) in the nearby starburst galaxy NGC 4449. These BHBs are located within or near to very young star clusters, indicating that they form within the clusters, but that some fraction are dynamically ejected. Here we present results from a suite of N-body simulations of N = 16,384 ({approx}6000 M{sub Sun }) star clusters, similar to the masses of BHB hosts in NGC 4449, through the first 10 Myr of their lives. Our goal is to determine whether dynamical interactions are responsible formore » the observed population of BHBs in NGC 4449. Our simulations span a wide range of initial size and density profiles, both with and without primordial mass segregation, testing both realistic initial conditions and extreme ones. We find that clusters without primordial mass segregation only dynamically produce BHBs within 10 Myr when they are extremely compact and centrally concentrated. Preliminary results that include primordial binaries support this conclusion. The introduction of strong primordial mass segregation, however, greatly increases the rapidity with which the binaries form, although these are still not tight enough that they will emit X-rays. We conclude that X-ray emitting BHBs are unlikely to form dynamically in clusters of this mass under realistic conditions. Instead, they probably originate from binaries that contain two massive stars with small orbital separations, which are present from the cluster's birth.« less
  • The formation of compact stellar-mass binaries is a difficult, but interesting problem in astrophysics. There are two main formation channels: in the field via binary star evolution, or in dense stellar systems via dynamical interactions. The Laser Interferometer Gravitational-wave Observatory (LIGO) has detected black hole binaries (BHBs) via their gravitational radiation. These detections provide us with information about the physical parameters of the system. It has been claimed that when the Laser Interferometer Space Antenna (LISA) is operating, the joint observation of these binaries with LIGO will allow us to derive the channels that lead to their formation. However, wemore » show that for BHBs in dense stellar systems dynamical interactions could lead to high eccentricities such that a fraction of the relativistic mergers are not audible to LISA. A non-detection by LISA puts a lower limit of about 0.005 on the eccentricity of a BHB entering the LIGO band. On the other hand, a deci-Hertz observatory, like DECIGO or Tian Qin, would significantly enhance the chances of a joint detection and shed light on the formation channels of these binaries.« less
  • We suggest a possible explanation for the high frequency quasi-periodic oscillations (QPOs) in black hole (BH) low-mass X-ray binaries. By solving the perturbation general relativistic magnetohydrodynamic equations, we find two stable modes of the Alfven wave in the accretion disks with toroidal magnetic fields. We suggest that these two modes may lead to the double high frequency QPOs if they are produced in the transition region between the inner advection-dominated accretion flow and the outer thin disk. This model naturally accounts for the 3:2 relation for the upper and lower frequencies of the QPOs, and the relation between the BHmore » mass and QPO frequency.« less