skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Radio-interferometric Monitoring of FRB 131104: A Coincident AGN Flare, but No Evidence for a Cosmic Fireball

Abstract

The localization of fast radio bursts (FRBs) has been hindered by the poor angular resolution of the detection observations and inconclusive identification of transient or variable counterparts. Recently a γ -ray pulse of 380 s duration has been associated with FRB 131104. We report on radio-continuum imaging observations of the original localization region of the FRB, beginning three days after the event and comprising 25 epochs over 2.5 years. We argue that the probability of an association between the FRB and the γ -ray transient has been overestimated. We provide upper limits on radio afterglow emission that would be predicted if the γ -ray transient was associated with an energetic γ -ray burst. We further report the discovery of an unusual variable radio source spatially and temporally coincident with FRB 131104, but not spatially coincident with the γ -ray event. The radio variable flares by a factor of 3 above its long-term average within 10 day of the FRB at 7.5 GHz, with a factor-of-2 increase at 5.5 GHz. Since the flare, the variable has persisted with only modest modulation and never approached the flux density observed in the days after the FRB. We identify an optical counterpart to themore » variable. Optical and infrared photometry, and deep optical spectroscopy, suggest that the object is a narrow-line radio active galactic nucleus.« less

Authors:
 [1];  [2]
  1. CSIRO Astronomy and Space Science, Australia Telescope National Facility, Box 76, Epping, NSW 1710 (Australia)
  2. Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States)
Publication Date:
OSTI Identifier:
22654522
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal Letters; Journal Volume: 837; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; AFTERGLOW; BLACK HOLES; COSMIC GAMMA BURSTS; DETECTION; EMISSION; FLAMES; FLUX DENSITY; GALAXIES; GAMMA RADIATION; GHZ RANGE; NUCLEAR FIREBALLS; NUCLEI; PHOTOMETRY; PROBABILITY; PULSES; RESOLUTION; SOLAR RADIO BURSTS; SPECTROSCOPY

Citation Formats

Shannon, R. M., and Ravi, V., E-mail: ryan.shannon@csiro.au, E-mail: vikram@caltech.edu. Radio-interferometric Monitoring of FRB 131104: A Coincident AGN Flare, but No Evidence for a Cosmic Fireball. United States: N. p., 2017. Web. doi:10.3847/2041-8213/AA62FB.
Shannon, R. M., & Ravi, V., E-mail: ryan.shannon@csiro.au, E-mail: vikram@caltech.edu. Radio-interferometric Monitoring of FRB 131104: A Coincident AGN Flare, but No Evidence for a Cosmic Fireball. United States. doi:10.3847/2041-8213/AA62FB.
Shannon, R. M., and Ravi, V., E-mail: ryan.shannon@csiro.au, E-mail: vikram@caltech.edu. Fri . "Radio-interferometric Monitoring of FRB 131104: A Coincident AGN Flare, but No Evidence for a Cosmic Fireball". United States. doi:10.3847/2041-8213/AA62FB.
@article{osti_22654522,
title = {Radio-interferometric Monitoring of FRB 131104: A Coincident AGN Flare, but No Evidence for a Cosmic Fireball},
author = {Shannon, R. M. and Ravi, V., E-mail: ryan.shannon@csiro.au, E-mail: vikram@caltech.edu},
abstractNote = {The localization of fast radio bursts (FRBs) has been hindered by the poor angular resolution of the detection observations and inconclusive identification of transient or variable counterparts. Recently a γ -ray pulse of 380 s duration has been associated with FRB 131104. We report on radio-continuum imaging observations of the original localization region of the FRB, beginning three days after the event and comprising 25 epochs over 2.5 years. We argue that the probability of an association between the FRB and the γ -ray transient has been overestimated. We provide upper limits on radio afterglow emission that would be predicted if the γ -ray transient was associated with an energetic γ -ray burst. We further report the discovery of an unusual variable radio source spatially and temporally coincident with FRB 131104, but not spatially coincident with the γ -ray event. The radio variable flares by a factor of 3 above its long-term average within 10 day of the FRB at 7.5 GHz, with a factor-of-2 increase at 5.5 GHz. Since the flare, the variable has persisted with only modest modulation and never approached the flux density observed in the days after the FRB. We identify an optical counterpart to the variable. Optical and infrared photometry, and deep optical spectroscopy, suggest that the object is a narrow-line radio active galactic nucleus.},
doi = {10.3847/2041-8213/AA62FB},
journal = {Astrophysical Journal Letters},
number = 2,
volume = 837,
place = {United States},
year = {Fri Mar 10 00:00:00 EST 2017},
month = {Fri Mar 10 00:00:00 EST 2017}
}
  • We present deep Spitzer/Infrared Spectrograph (IRS) spectra for complete samples of 46 2 Jy radio galaxies (0.05 < z < 0.7) and 19 3CRR FRII radio galaxies (z < 0.1), and use the detection of polycyclic aromatic hydrocarbon (PAH) features to examine the incidence of contemporaneous star formation and radio-loud active galactic nucleus (AGN) activity. Our analysis reveals PAH features in only a minority (30%) of the objects with good IRS spectra. Using the wealth of complementary data available for the 2 Jy and 3CRR samples we make detailed comparisons between a range of star formation diagnostics: optical continuum spectroscopy,more » mid- to far-IR (MFIR) color, far-IR excess and PAH detection. There is good agreement between the various diagnostic techniques: most candidates identified to have star formation activity on the basis of PAH detection are also identified using at least two of the other techniques. We find that only 35% of the combined 2 Jy and 3CRR sample show evidence for recent star formation activity (RSFA) at optical and/or MFIR wavelengths. This result argues strongly against the idea of a close link between starburst and powerful radio-loud AGN activity, reinforcing the view that, although a large fraction of powerful radio galaxies may be triggered in galaxy interactions, only a minority are triggered at the peaks of star formation activity in major, gas-rich mergers. However, we find that compact radio sources (D < 15 kpc) show a significantly higher incidence of RSFA (>75%) than their more extended counterparts ( Almost-Equal-To 15%-25%). We discuss this result in the context of a possible bias toward the selection of compact radio sources triggered in gas-rich environments.« less
  • To explain the properties of the most massive low-redshift galaxies and the shape of their mass function, recent models of galaxy evolution include strong AGN feedback to complement starburst-driven feedback in massive galaxies. Using the near-infrared integral-field spectrograph SPIFFI on the VLT, we searched for direct evidence for such a feedback in the optical emission line gas around the z = 2.16 powerful radio galaxy MRC1138-262, likely a massive galaxy in formation. The kpc-scale kinematics, with FWHMs and relative velocities {approx}< 2400 km s{sup -1} and nearly spherical spatial distribution, do not resemble large-scale gravitational motion or starburst-driven winds. Order-of-magnitudemore » timescale and energy arguments favor the AGN as the only plausible candidate to accelerate the gas, with a total energy injection of {approx} few x 10{sup 60} ergs or more, necessary to power the outflow, and relatively efficient coupling between radio jet and ISM. Observed outflow properties are in gross agreement with the models, and suggest that AGN winds might have a similar, or perhaps larger, cosmological significance than starburst-driven winds, if MRC1138-262 is indeed archetypal. Moreover, the outflow has the potential to remove significant gas fractions ({approx}< 50%) from a > L* galaxy within a few 10 to 100 Myrs, fast enough to preserve the observed [{alpha}/Fe] overabundance in massive galaxies at low redshift. Using simple arguments, it appears that feedback like that observed in MRC1138-262 may have sufficient energy to inhibit material from infalling into the dark matter halo and thus regulate galaxy growth as required in some recent models of hierarchical structure formation.« less
  • Keane et al. have recently reported the discovery of a new fast radio burst (FRB), FRB 150418, with a promising radio counterpart at 5.5 and 7.5 GHz—a rapidly decaying source, falling from 200–300 μ Jy to 100 μ Jy on timescales of ∼6 days. This transient source may be associated with an elliptical galaxy at redshift z = 0.492, providing the first firm spectroscopic redshift for an FRB and the ability to estimate the density of baryons in the intergalactic medium via the combination of known redshift and radio dispersion of the FRB. An alternative explanation, first suggested by Williamsmore » and Berger, is that the identified counterpart may instead be a compact active galactic nucleus (AGN). The putative counterpart’s variation may then instead be extrinsic, caused by refractive scintillation in the ionized interstellar medium of the Milky Way, which would invalidate the association with FRB 150418. We examine this latter explanation in detail and show that the reported observations are consistent with scintillating radio emission from the core of a radio-loud AGN having a brightness temperature T {sub b} ≳ 10{sup 9} K. Using numerical simulations of the expected scattering for the line of sight to FRB 150418, we provide example images and light curves of such an AGN at 5.5 and 7.5 GHz. These results can be compared with continued radio monitoring to conclusively determine the importance of scintillation for the observed radio variability, and they show that scintillation is a critical consideration for continued searches for FRB counterparts at radio wavelengths.« less
  • Observations of the H I 21 cm transition line promises to be an important probe into the cosmic dark ages and epoch of reionization. One of the challenges for the detection of this signal is the accuracy of the foreground source removal. This paper investigates the extragalactic point source contamination and how accurately the bright sources (approx>1 Jy) should be removed in order to reach the desired rms noise and be able to detect the 21 cm transition line. Here, we consider position and flux errors in the global sky model for these bright sources as well as the frequencymore » independent residual calibration errors. The synthesized beam is the only frequency dependent term included here. This work determines the level of accuracy for the calibration and source removal schemes and puts forward constraints for the design of the cosmic reionization data reduction scheme for the upcoming low frequency arrays such as, Murchison Widefield Array, Precision Array to Probe Epoch of Reionization, etc. We show that in order to detect the reionization signal the bright sources need to be removed from the data sets with a positional accuracy of approx0.1 arcsec. Our results also demonstrate that the efficient foreground source removal strategies can only tolerate a frequency independent antenna based mean residual calibration error of approx<0.2% in amplitude or approx<0.{sup 0}2 in phase, if they are constant over each days of observations (6 hr). In future papers, we will extend this analysis to the power-spectral domain and also include the frequency-dependent calibration errors and direction-dependent errors (ionosphere, primary beam, etc.).« less