skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Spectral Resolution-linked Bias in Transit Spectroscopy of Extrasolar Planets

Abstract

We re-visit the principles of transmission spectroscopy for transiting extrasolar planets, focusing on the overlap between the planetary spectrum and the illuminating stellar spectrum. Virtually all current models of exoplanetary transmission spectra utilize an approximation that is inaccurate when the spectrum of the illuminating star has a complex line structure, such as molecular bands in M-dwarf spectra. In those cases, it is desirable to model the observations using a coupled stellar–planetary radiative transfer model calculated at high spectral resolving power, followed by convolution to the observed resolution. Not consistently accounting for overlap of stellar M-dwarf and planetary lines at high spectral resolution can bias the modeled amplitude of the exoplanetary transmission spectrum, producing modeled absorption that is too strong. We illustrate this bias using the exoplanet TRAPPIST-1b, as observed using Hubble Space Telescope /WFC3. The bias in this case is about 250 ppm, 12% of the modeled transit absorption. Transit spectroscopy using JWST will have access to longer wavelengths where the water bands are intrinsically stronger, and the observed signal-to-noise ratios will be higher than currently possible. We therefore expect that this resolution-linked bias will be especially important for future JWST observations of TESS-discovered super-Earths and mini-Neptunes transiting M-dwarfs.

Authors:
;  [1]
  1. Department of Astronomy, University of Maryland at College Park, College Park, MD 20742 (United States)
Publication Date:
OSTI Identifier:
22654477
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal Letters; Journal Volume: 841; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ABSORPTION; APPROXIMATIONS; NEPTUNE PLANET; NOISE; RADIANT HEAT TRANSFER; RESOLUTION; SATELLITE ATMOSPHERES; SATELLITES; SIGNAL-TO-NOISE RATIO; SPACE; SPECTRA; SPECTROSCOPY; STARS; TELESCOPES; WATER; WAVELENGTHS

Citation Formats

Deming, Drake, and Sheppard, Kyle. Spectral Resolution-linked Bias in Transit Spectroscopy of Extrasolar Planets. United States: N. p., 2017. Web. doi:10.3847/2041-8213/AA706C.
Deming, Drake, & Sheppard, Kyle. Spectral Resolution-linked Bias in Transit Spectroscopy of Extrasolar Planets. United States. doi:10.3847/2041-8213/AA706C.
Deming, Drake, and Sheppard, Kyle. Sat . "Spectral Resolution-linked Bias in Transit Spectroscopy of Extrasolar Planets". United States. doi:10.3847/2041-8213/AA706C.
@article{osti_22654477,
title = {Spectral Resolution-linked Bias in Transit Spectroscopy of Extrasolar Planets},
author = {Deming, Drake and Sheppard, Kyle},
abstractNote = {We re-visit the principles of transmission spectroscopy for transiting extrasolar planets, focusing on the overlap between the planetary spectrum and the illuminating stellar spectrum. Virtually all current models of exoplanetary transmission spectra utilize an approximation that is inaccurate when the spectrum of the illuminating star has a complex line structure, such as molecular bands in M-dwarf spectra. In those cases, it is desirable to model the observations using a coupled stellar–planetary radiative transfer model calculated at high spectral resolving power, followed by convolution to the observed resolution. Not consistently accounting for overlap of stellar M-dwarf and planetary lines at high spectral resolution can bias the modeled amplitude of the exoplanetary transmission spectrum, producing modeled absorption that is too strong. We illustrate this bias using the exoplanet TRAPPIST-1b, as observed using Hubble Space Telescope /WFC3. The bias in this case is about 250 ppm, 12% of the modeled transit absorption. Transit spectroscopy using JWST will have access to longer wavelengths where the water bands are intrinsically stronger, and the observed signal-to-noise ratios will be higher than currently possible. We therefore expect that this resolution-linked bias will be especially important for future JWST observations of TESS-discovered super-Earths and mini-Neptunes transiting M-dwarfs.},
doi = {10.3847/2041-8213/AA706C},
journal = {Astrophysical Journal Letters},
number = 1,
volume = 841,
place = {United States},
year = {Sat May 20 00:00:00 EDT 2017},
month = {Sat May 20 00:00:00 EDT 2017}
}
  • Transmission spectroscopy provides a window to study exoplanetary atmospheres, but that window is fogged by clouds and hazes. Clouds and haze introduce a degeneracy between the strength of gaseous absorption features and planetary physical parameters such as abundances. One way to break that degeneracy is via statistical studies. We collect all published HST /WFC3 transit spectra for 1.1–1.65 μ m water vapor absorption and perform a statistical study on potential correlations between the water absorption feature and planetary parameters. We fit the observed spectra with a template calculated for each planet using the Exo-transmit code. We express the magnitude ofmore » the water absorption in scale heights, thereby removing the known dependence on temperature, surface gravity, and mean molecular weight. We find that the absorption in scale heights has a positive baseline correlation with planetary equilibrium temperature; our hypothesis is that decreasing cloud condensation with increasing temperature is responsible for this baseline slope. However, the observed sample is also intrinsically degenerate in the sense that equilibrium temperature correlates with planetary mass. We compile the distribution of absorption in scale heights, and we find that this distribution is closer to log-normal than Gaussian. However, we also find that the distribution of equilibrium temperatures for the observed planets is similarly log-normal. This indicates that the absorption values are affected by observational bias, whereby observers have not yet targeted a sufficient sample of the hottest planets.« less
  • Several processes can cause the shape of an extrasolar giant planet's shadow, as viewed in transit, to depart from circular. In addition to rotational effects, cloud formation, non-homogenous haze production and movement, and dynamical effects (winds) could also be important. When such a planet transits its host star as seen from the Earth, the asphericity will introduce a deviation in the transit light curve relative to the transit of a perfectly spherical (or perfectly oblate) planet. We develop a theoretical framework to interpret planetary shapes. We then generate predictions for transiting planet shapes based on a published theoretical dynamical modelmore » of HD189733b. Using these shape models we show that planet shapes are unlikely to introduce detectable light-curve deviations (those >1 x 10{sup -5} of the host star), but that the shapes may lead to astrophysical sources of systematic error when measuring planetary oblateness, transit time, and impact parameter.« less
  • Main-sequence stars earlier than spectral-type approxF6 or so are expected to rotate rapidly due to their radiative exteriors. This rapid rotation leads to an oblate stellar figure. It also induces the photosphere to be hotter (by up to several thousand kelvin) at the pole than at the equator as a result of a process called gravity darkening that was first predicted by von Zeipel. Transits of extrasolar planets across such a non-uniform, oblate disk yield unusual and distinctive lightcurves that can be used to determine the relative alignment of the stellar rotation pole and the planet orbit normal. This spin-orbitmore » alignment can be used to constrain models of planet formation and evolution. Orderly planet formation and migration within a disk that is coplanar with the stellar equator will result in spin-orbit alignment. More violent planet-planet scattering events should yield spin-orbit misaligned planets. Rossiter-McLaughlin measurements of transits of lower-mass stars show that some planets are spin-orbit aligned, and some are not. Since Rossiter-McLaughlin measurements are difficult around rapid rotators, lightcurve photometry may be the best way to determine the spin-orbit alignment of planets around massive stars. The Kepler mission will monitor approx10{sup 4} of these stars within its sample. The lightcurves of any detected planets will allow us to probe the planet formation process around high-mass stars for the first time.« less
  • Transit timing variations (TTVs)-deviations from strict periodicity between successive passages of a transiting planet-can be used to probe the structure and dynamics of multiple-planet systems. In this paper, we examine prospects for numerically solving the so-called inverse problem, the determination of the orbital elements of a perturbing body from the TTVs it induces. We assume that the planetary systems under examination have a limited number of Doppler velocity measurements and show that a more extensive radial velocity (RV) characterization with precision comparable to the semi-amplitude of the perturber may remove degeneracies in the solution. We examine several configurations of interest,more » including (1) a prototypical non-resonant system, modeled after HD 40307 b and c, which contains multiple super-Earth-mass planets, (2) a hypothetical system containing a transiting giant planet with a terrestrial-mass companion trapped in low-order mean motion resonance, and (3) the HAT-P-13 system, in which forced precession by an outer perturbing body that is well characterized by Doppler RV measurements can give insight into the interior structure of a perturbing planet, and for which the determination of mutual inclination between the transiting planet and its perturber is a key issue.« less
  • We discuss the detectability of gravitationally bound pairs of gas-giant planets (which we call “binary planets”) in extrasolar planetary systems that are formed through orbital instability followed by planet–planet dynamical tides during their close encounters, based on the results of N-body simulations by Ochiai et al. (Paper I). Paper I showed that the formation probability of a binary is as much as ∼10% for three giant planet systems that undergo orbital instability, and after post-capture long-term tidal evolution, the typical binary separation is three to five times the sum of the physical radii of the planets. The binary planets aremore » stable during the main-sequence lifetime of solar-type stars, if the stellarcentric semimajor axis of the binary is larger than 0.3 AU. We show that detecting modulations of transit light curves is the most promising observational method to detect binary planets. Since the likely binary separations are comparable to the stellar diameter, the shape of the transit light curve is different from transit to transit, depending on the phase of the binary’s orbit. The transit durations and depth for binary planet transits are generally longer and deeper than those for the single planet case. We point out that binary planets could exist among the known inflated gas-giant planets or objects classified as false positive detections at orbital radii ≳0.3 AU, propose a binary planet explanation for the CoRoT candidate SRc01 E2 1066, and show that binary planets are likely to be present in, and could be detected using, Kepler-quality data.« less