skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An Explanation of the Missing Flux from Boyajian's Mysterious Star

Abstract

A previously unremarkable star in the constellation Cygnus has, in the past year, become known as the most mysterious object in our Galaxy. Boyajian’s star exhibits puzzling episodes of sporadic, deep dimming discovered in photometry with the Kepler Mission. Proposed explanations have focused on its obscuration by colliding exoplanets, exocomets, and even intervention of alien intelligence. These hypotheses have considered only phenomena external to the star because the radiative flux missing in the dimmings was believed to exceed the star’s storage capacity. We point out that modeling of variations in solar luminosity indicates that convective stars can store the required fluxes. It also suggests explanations for (a) a reported time-profile asymmetry of the short, deep dimmings and (b) a slower, decadal scale dimming reported from archival and Kepler photometry. Our findings suggest a broader range of explanations of Boyajian’s star that may produce new insights into stellar magneto-convection.

Authors:
 [1]
  1. 192 Willow Road, Nahant, MA 01908 (United States)
Publication Date:
OSTI Identifier:
22654464
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal Letters; Journal Volume: 842; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ASYMMETRY; CAPACITY; CONVECTION; GALAXIES; HYPOTHESIS; LUMINOSITY; PHOTOMETRY; SIMULATION; STARSPOTS; SUN

Citation Formats

Foukal, Peter. An Explanation of the Missing Flux from Boyajian's Mysterious Star. United States: N. p., 2017. Web. doi:10.3847/2041-8213/AA740F.
Foukal, Peter. An Explanation of the Missing Flux from Boyajian's Mysterious Star. United States. doi:10.3847/2041-8213/AA740F.
Foukal, Peter. Sat . "An Explanation of the Missing Flux from Boyajian's Mysterious Star". United States. doi:10.3847/2041-8213/AA740F.
@article{osti_22654464,
title = {An Explanation of the Missing Flux from Boyajian's Mysterious Star},
author = {Foukal, Peter},
abstractNote = {A previously unremarkable star in the constellation Cygnus has, in the past year, become known as the most mysterious object in our Galaxy. Boyajian’s star exhibits puzzling episodes of sporadic, deep dimming discovered in photometry with the Kepler Mission. Proposed explanations have focused on its obscuration by colliding exoplanets, exocomets, and even intervention of alien intelligence. These hypotheses have considered only phenomena external to the star because the radiative flux missing in the dimmings was believed to exceed the star’s storage capacity. We point out that modeling of variations in solar luminosity indicates that convective stars can store the required fluxes. It also suggests explanations for (a) a reported time-profile asymmetry of the short, deep dimmings and (b) a slower, decadal scale dimming reported from archival and Kepler photometry. Our findings suggest a broader range of explanations of Boyajian’s star that may produce new insights into stellar magneto-convection.},
doi = {10.3847/2041-8213/AA740F},
journal = {Astrophysical Journal Letters},
number = 1,
volume = 842,
place = {United States},
year = {Sat Jun 10 00:00:00 EDT 2017},
month = {Sat Jun 10 00:00:00 EDT 2017}
}
  • We report on the discovery of a high velocity B star, HD 69686. We estimate its space velocity, distance, surface temperature, gravity, and age. With these data, we are able to reconstruct the trajectory of the star and to trace it back to its birthplace. We use evolutionary tracks for single stars to estimate that HD 69686 was born 73 Myr ago in the outer part of our Galaxy (r {approx} 12 kpc) at a position well below the Galactic plane (z {approx} -1.8 kpc), a very unusual birthplace for a B star. Along the star's projected path in themore » sky, we also find about 12 other stars having similar proper motions, and their photometry data suggest that they are located at the same distance as HD 69686 and probably have the same age. We speculate on the origin of this group by star formation in a high velocity cloud or as a Galactic merger fragment.« less
  • We present the discovery of two extended ∼0.12 mag dimming events of the weak-lined T Tauri star V1334. The start of the first event was missed but came to an end in late 2003, and the second began in 2009 February, and continues as of 2016 November. Since the egress of the current event has not yet been observed, it suggests a period of >13 years if this event is periodic. Spectroscopic observations suggest the presence of a small inner disk, although the spectral energy distribution shows no infrared excess. We explore the possibility that the dimming events are causedmore » by an orbiting body (e.g., a disk warp or dust trap), enhanced disk winds, hydrodynamical fluctuations of the inner disk, or a significant increase in the magnetic field flux at the surface of the star. We also find a ∼0.32 day periodic photometric signal that persists throughout the 2009 dimming which appears to not be due to ellipsoidal variations from a close stellar companion. High-precision photometric observations of V1334 Tau during K2 campaign 13, combined with simultaneous photometric and spectroscopic observations from the ground, will provide crucial information about the photometric variability and its origin.« less
  • The color–magnitude diagram (CMD) of globular cluster NGC 1651 has special structures including a broad main sequence, an extended main sequence turn-off, and an extended red giant clump. The reason for such a special CMD remains unclear. In order to test the difference among the results from various stellar population assumptions, we study a high-quality CMD of NGC 1651 from the Hubble Space Telescope archive using eight kinds of models. Distance modulus, extinction, age ranges, star formation mode, fraction of binaries, and fraction of rotational stars are determined and then compared. The results show that stellar populations both with and without agemore » spread can reproduce the special structure of the observed CMD. A composite population with extended star formation from 1.8 Gyrs ago to 1.4 Gyrs ago, which contains 50% binaries and 70% rotational stars, fits the observed CMD best. Meanwhile, a 1.5 Gyr-old simple population that consists of rotational stars can also fit the observed CMD well. The results of CMD fitting are shown to depend strongly on stellar population type (simple or composite), and fraction of rotators. If the member stars of NGC 1651 formed in a single star burst, the effect of stellar rotation should be very important for explaining the observed CMDs. Otherwise, the effect may be small. It is also possible that the special observed CMD is a result of the combined effects of stellar binarity, rotation, and age spread. Therefore, further work on stellar population type and fraction of rotational stars of intermediate-age clusters are necessary to understand their observed CMDs.« less
  • It is well known that mercury (Hg) emission from soils is largely controlled by solar radiation and soil temperature, exhibiting diel cycles that closely follow diel variations of solar radiation. To study soil Hg emission processes, we conducted experiments by measuring soil Hg emission fluxes under controlled conditions in the laboratory with a dynamic flux chamber using outside ambient air as flushing air. Unexpectedly, we observed consistent, recurring diel cycles of Hg emissions from dry soils held at constant temperature in the dark in our laboratory. The peaks of the emissions also seemed subject to some seasonal variation and tomore » respond to local weather conditions with lower flux peaks in wintertime and on cloudy or rainy days. Finally, much lower soil Hg emission fluxes were observed in the presence of Hg-free zero air than in the presence of outside ambient air. It is hypothesized that some unidentified air-borne substance(s) in the ambient air might be responsible for the observed diel cycles of soil Hg emission. Further elaborate mechanistic investigations are clearly needed to test the initial working hypotheses and uncover the cause for this interesting, mysterious phenomenon. The present work and recent finding of enhancement of Hg emissions from soil and mineral particles by O3 seem to point to a research need to probe the possible role of near-ground atmospheric chemistry in Hg air/soil exchange.« less