skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pulsed Accretion in the T Tauri Binary TWA 3A

Abstract

TWA 3A is the most recent addition to a small group of young binary systems that both actively accrete from a circumbinary disk and have spectroscopic orbital solutions. As such, it provides a unique opportunity to test binary accretion theory in a well-constrained setting. To examine TWA 3A’s time-variable accretion behavior, we have conducted a two-year, optical photometric monitoring campaign, obtaining dense orbital phase coverage (∼20 observations per orbit) for ∼15 orbital periods. From U -band measurements we derive the time-dependent binary mass accretion rate, finding bursts of accretion near each periastron passage. On average, these enhanced accretion events evolve over orbital phases 0.85 to 1.05, reaching their peak at periastron. The specific accretion rate increases above the quiescent value by a factor of ∼4 on average but the peak can be as high as an order of magnitude in a given orbit. The phase dependence and amplitude of TWA 3A accretion is in good agreement with numerical simulations of binary accretion with similar orbital parameters. In these simulations, periastron accretion bursts are fueled by periodic streams of material from the circumbinary disk that are driven by the binary orbit. We find that TWA 3A’s average accretion behavior is remarkablymore » similar to DQ Tau, another T Tauri binary with similar orbital parameters, but with significantly less variability from orbit to orbit. This is only the second clear case of orbital-phase-dependent accretion in a T Tauri binary.« less

Authors:
;  [1];  [2]; ;  [3]
  1. Department of Astronomy, University of Wisconsin–Madison, 475 North Charter Street, Madison, WI 53706 (United States)
  2. The Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China)
  3. NASA Exoplanet Science Institute, IPAC/Caltech, Pasadena, CA 91125 (United States)
Publication Date:
OSTI Identifier:
22654459
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal Letters; Journal Volume: 842; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ACCRETION DISKS; AMPLITUDES; BINARY STARS; COMPUTERIZED SIMULATION; MASS; ORBITS; PERIODICITY; PULSES; STARS; STREAMS; TIME DEPENDENCE

Citation Formats

Tofflemire, Benjamin M., Mathieu, Robert D., Herczeg, Gregory J., Akeson, Rachel L., and Ciardi, David R. Pulsed Accretion in the T Tauri Binary TWA 3A. United States: N. p., 2017. Web. doi:10.3847/2041-8213/AA75CB.
Tofflemire, Benjamin M., Mathieu, Robert D., Herczeg, Gregory J., Akeson, Rachel L., & Ciardi, David R. Pulsed Accretion in the T Tauri Binary TWA 3A. United States. doi:10.3847/2041-8213/AA75CB.
Tofflemire, Benjamin M., Mathieu, Robert D., Herczeg, Gregory J., Akeson, Rachel L., and Ciardi, David R. Tue . "Pulsed Accretion in the T Tauri Binary TWA 3A". United States. doi:10.3847/2041-8213/AA75CB.
@article{osti_22654459,
title = {Pulsed Accretion in the T Tauri Binary TWA 3A},
author = {Tofflemire, Benjamin M. and Mathieu, Robert D. and Herczeg, Gregory J. and Akeson, Rachel L. and Ciardi, David R.},
abstractNote = {TWA 3A is the most recent addition to a small group of young binary systems that both actively accrete from a circumbinary disk and have spectroscopic orbital solutions. As such, it provides a unique opportunity to test binary accretion theory in a well-constrained setting. To examine TWA 3A’s time-variable accretion behavior, we have conducted a two-year, optical photometric monitoring campaign, obtaining dense orbital phase coverage (∼20 observations per orbit) for ∼15 orbital periods. From U -band measurements we derive the time-dependent binary mass accretion rate, finding bursts of accretion near each periastron passage. On average, these enhanced accretion events evolve over orbital phases 0.85 to 1.05, reaching their peak at periastron. The specific accretion rate increases above the quiescent value by a factor of ∼4 on average but the peak can be as high as an order of magnitude in a given orbit. The phase dependence and amplitude of TWA 3A accretion is in good agreement with numerical simulations of binary accretion with similar orbital parameters. In these simulations, periastron accretion bursts are fueled by periodic streams of material from the circumbinary disk that are driven by the binary orbit. We find that TWA 3A’s average accretion behavior is remarkably similar to DQ Tau, another T Tauri binary with similar orbital parameters, but with significantly less variability from orbit to orbit. This is only the second clear case of orbital-phase-dependent accretion in a T Tauri binary.},
doi = {10.3847/2041-8213/AA75CB},
journal = {Astrophysical Journal Letters},
number = 2,
volume = 842,
place = {United States},
year = {Tue Jun 20 00:00:00 EDT 2017},
month = {Tue Jun 20 00:00:00 EDT 2017}
}
  • We report initial results from a quasi-simultaneous X-ray/optical observing campaign targeting V4046 Sgr, a close, synchronous-rotating classical T Tauri star (CTTS) binary in which both components are actively accreting. V4046 Sgr is a strong X-ray source, with the X-rays mainly arising from high-density (n{sub e}{approx} 10{sup 11}-10{sup 12} cm{sup -3}) plasma at temperatures of 3-4 MK. Our multi-wavelength campaign aims to simultaneously constrain the properties of this X-ray-emitting plasma, the large-scale magnetic field, and the accretion geometry. In this paper, we present key results obtained via time-resolved X-ray-grating spectra, gathered in a 360 ks XMM-Newton observation that covered 2.2 systemmore » rotations. We find that the emission lines produced by this high-density plasma display periodic flux variations with a measured period, 1.22 {+-} 0.01 d, that is precisely half that of the binary star system (2.42 d). The observed rotational modulation can be explained assuming that the high-density plasma occupies small portions of the stellar surfaces, corotating with the stars, and that the high-density plasma is not azimuthally symmetrically distributed with respect to the rotational axis of each star. These results strongly support models in which high-density, X-ray-emitting CTTS plasma is material heated in accretion shocks, located at the base of accretion flows tied to the system by magnetic field lines.« less
  • We have obtained 48 high-resolution echelle spectra of the pre-main-sequence eclipsing binary system KH 15D (V582 Mon, P = 48.37 days, e {approx} 0.6, M{sub A} = 0.6 M{sub Sun }, M{sub B} = 0.7 M{sub Sun }). The eclipses are caused by a circumbinary disk (CBD) seen nearly edge on, which at the epoch of these observations completely obscured the orbit of star B and a large portion of the orbit of star A. The spectra were obtained over five contiguous observing seasons from 2001/2002 to 2005/2006 while star A was fully visible, fully occulted, and during several ingressmore » and egress events. The H{alpha} line profile shows dramatic changes in these time series data over timescales ranging from days to years. A fraction of the variations are due to 'edge effects' and depend only on the height of star A above or below the razor sharp edge of the occulting disk. Other observed variations depend on the orbital phase: the H{alpha} emission line profile changes from an inverse P-Cygni-type profile during ingress to an enhanced double-peaked profile, with both a blue and a red emission component, during egress. Each of these interpreted variations are complicated by the fact that there is also a chaotic, irregular component present in these profiles. We find that the complex data set can be largely understood in the context of accretion onto the stars from a CBD with gas flows as predicted by the models of eccentric T Tauri binaries put forward by Artymowicz and Lubow, Guenther and Kley, and de Val-Borro et al. In particular, our data provide strong support for the pulsed accretion phenomenon, in which enhanced accretion occurs during and after perihelion passage.« less
  • The theory of binary star formation predicts that close binaries ( a < 100 au) will experience periodic pulsed accretion events as streams of material form at the inner edge of a circumbinary disk (CBD), cross a dynamically cleared gap, and feed circumstellar disks or accrete directly onto the stars. The archetype for the pulsed accretion theory is the eccentric, short-period, classical T Tauri binary DQ Tau. Low-cadence (∼daily) broadband photometry has shown brightening events near most periastron passages, just as numerical simulations would predict for an eccentric binary. Magnetic reconnection events (flares) during the collision of stellar magnetospheres nearmore » periastron could, however, produce the same periodic, broadband behavior when observed at a one-day cadence. To reveal the dominant physical mechanism seen in DQ Tau’s low-cadence observations, we have obtained continuous, moderate-cadence, multiband photometry over 10 orbital periods, supplemented with 27 nights of minute-cadence photometry centered on four separate periastron passages. While both accretion and stellar flares are present, the dominant timescale and morphology of brightening events are characteristic of accretion. On average, the mass accretion rate increases by a factor of five near periastron, in good agreement with recent models. Large variability is observed in the morphology and amplitude of accretion events from orbit to orbit. We argue that this is due to the absence of stable circumstellar disks around each star, compounded by inhomogeneities at the inner edge of the CBD and within the accretion streams themselves. Quasiperiodic apastron accretion events are also observed, which are not predicted by binary accretion theory.« less
  • We report the discovery of TWA 30B, a wide ({approx}3400 AU), co-moving M dwarf companion to the nearby ({approx}42 pc) young star TWA 30. Companionship is confirmed from their statistically consistent proper motions and radial velocities (RVs), as well as a chance alignment probability of only 0.08%. Like TWA 30A, the spectrum of TWA 30B shows signatures of an actively accreting disk (H I and alkali line emission) and forbidden emission lines tracing outflowing material ([O I], [O II], [O III], [S II], and [N II]). We have also detected [C I] emission in the optical data, marking the firstmore » such detection of this line in a pre-main-sequence star. Negligible RV shifts in the emission lines relative to the stellar frame of rest ({Delta}V {approx}< 30 km s{sup -1}) indicate that the outflows are viewed in the plane of the sky and that the corresponding circumstellar disk is viewed edge-on. Indeed, TWA 30B appears to be heavily obscured by its disk, given that it is 5 mag fainter than TWA 30A at K band despite having a slightly earlier spectral type (M4 versus M5). The near-infrared spectrum of TWA 30B also evinces an excess that varies on day timescales, with colors that follow classical T Tauri tracks as opposed to variable reddening (as is the case for TWA 30A). Multi-epoch data show this excess to be well modeled by a black body component with temperatures ranging from 630 to 880 K and emitting areas that scale inversely with the temperature. The variable excess may arise from disk structure such as a rim or a warp at the inner disk edge located at a radial distance of {approx}3-5 R{sub sun}. As the second and third closest actively accreting and outflowing stars to the Sun (after TWA 3), TWA 30AB presents an ideal system for a detailed study of star and planetary formation processes at the low-mass end of the hydrogen-burning spectrum.« less
  • A general mechanism is presented for generating pressure-driven winds that are intrinsically bipolar from objects undergoing disk accretion. The energy librated in a boundary layer shock as the disk matter impacts the central object is shown to be sufficient to eject a fraction ..beta..approx.10/sup -2/ to 10/sup -3/ of the accreted mass. These winds are driven by a mechanism that accelerates the flow perpendicular to the plane of the disk and can therefore account for the bipolar geometry of the mass loss observed near young stars. The mass loss contained in these winds is comparable to that inferred for youngmore » stars. Thus, disk accretion-driven winds may constitute the T Tauri phase of stellar evolution. This mechanism is generally applicable, and thus massive pre-main-sequence objects as well as cataclysmic variables at times of enhanced accretion are predicted to eject bipolar outflows as well. Unmagnetized accreting neutron stas are also expected to eject bipolar flows. Since this mechanism requires stellar surfaces, however, it will not operate in disk accretion onto black holes.« less