skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: ALMA [N ii] 205 μ m Imaging Spectroscopy of the Interacting Galaxy System BRI 1202-0725 at Redshift 4.7

Abstract

We present the results from Atacama Large Millimeter/submillimeter Array imaging in the [N ii] 205 μ m fine-structure line (hereafter [N ii]) and the underlying continuum of BRI 1202-0725, an interacting galaxy system at z = 4.7, consisting of a quasi-stellar object (QSO), a submillimeter galaxy (SMG), and two Ly α emitters, all within ∼25 kpc of the QSO. We detect the QSO and SMG in both [N ii] and continuum. At the ∼1″ (or 6.6 kpc) resolution, both the QSO and SMG are resolved in [N ii], with the de-convolved major axes of ∼9 and ∼14 kpc, respectively. In contrast, their continuum emissions are much more compact and unresolved even at an enhanced resolution of ∼0.″7. The ratio of the [N ii] flux to the existing CO(7−6) flux is used to constrain the dust temperature ( T {sub dust}) for a more accurate determination of the FIR luminosity L {sub FIR}. Our best estimated T {sub dust} equals 43 (±2) K for both galaxies (assuming an emissivity index β = 1.8). The resulting L {sub CO(7−6)}/ L {sub FIR} ratios are statistically consistent with that of local luminous infrared galaxies, confirming that L {sub CO(7−6)} traces the star formationmore » (SF) rate (SFR) in these galaxies. We estimate that the ongoing SF of the QSO (SMG) has an SFR of 5.1 (6.9) × 10{sup 3} M {sub ⊙} yr{sup −1} (±30%) assuming Chabrier initial mass function, takes place within a diameter (at half maximum) of 1.3 (1.5) kpc, and will consume the existing 5 (5) × 10{sup 11} M {sub ⊙} of molecular gas in 10 (7) × 10{sup 7} years.« less

Authors:
; ;  [1];  [2];  [3];  [4];  [5];  [6];  [7];  [8];  [9];  [10]
  1. National Astronomical Observatories, Chinese Academy of Sciences (CAS), Beijing 100012 (China)
  2. Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)
  3. Nucleo de Astronomia de la Facultad de Ingenieria, Universidad Diego Portales, Av. Ejercito Libertador 441, Santiago (Chile)
  4. Department of Physics, University of Crete, GR-71003 Heraklion (Greece)
  5. Purple Mountain Observatory, CAS, Nanjing 210008 (China)
  6. Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)
  7. Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción (Chile)
  8. Centre de Recherche Astrophysique de Lyon (CRAL), Observatoire de Lyon, CNRS, UMR5574, F-69230, Saint-Genis-Laval (France)
  9. Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH (United Kingdom)
  10. University of Hawaii, Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)
Publication Date:
OSTI Identifier:
22654453
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal Letters; Journal Volume: 842; Journal Issue: 2; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; CARBON; CARBON MONOXIDE; DUSTS; EMISSION; EMISSIVITY; FINE STRUCTURE; GALAXIES; LUMINOSITY; MASS; MOLECULES; RED SHIFT; RESOLUTION; SPECTROSCOPY; STARS

Citation Formats

Lu, Nanyao, Xu, C. Kevin, Zhu, Lei, Zhao, Yinghe, Díaz-Santos, Tanio, Charmandaris, Vassilis, Gao, Yu, Van der Werf, Paul P., Privon, George C., Inami, Hanae, Rigopoulou, Dimitra, and Sanders, David B., E-mail: nanyao.lu@gmail.com. ALMA [N ii] 205 μ m Imaging Spectroscopy of the Interacting Galaxy System BRI 1202-0725 at Redshift 4.7. United States: N. p., 2017. Web. doi:10.3847/2041-8213/AA77FC.
Lu, Nanyao, Xu, C. Kevin, Zhu, Lei, Zhao, Yinghe, Díaz-Santos, Tanio, Charmandaris, Vassilis, Gao, Yu, Van der Werf, Paul P., Privon, George C., Inami, Hanae, Rigopoulou, Dimitra, & Sanders, David B., E-mail: nanyao.lu@gmail.com. ALMA [N ii] 205 μ m Imaging Spectroscopy of the Interacting Galaxy System BRI 1202-0725 at Redshift 4.7. United States. doi:10.3847/2041-8213/AA77FC.
Lu, Nanyao, Xu, C. Kevin, Zhu, Lei, Zhao, Yinghe, Díaz-Santos, Tanio, Charmandaris, Vassilis, Gao, Yu, Van der Werf, Paul P., Privon, George C., Inami, Hanae, Rigopoulou, Dimitra, and Sanders, David B., E-mail: nanyao.lu@gmail.com. Tue . "ALMA [N ii] 205 μ m Imaging Spectroscopy of the Interacting Galaxy System BRI 1202-0725 at Redshift 4.7". United States. doi:10.3847/2041-8213/AA77FC.
@article{osti_22654453,
title = {ALMA [N ii] 205 μ m Imaging Spectroscopy of the Interacting Galaxy System BRI 1202-0725 at Redshift 4.7},
author = {Lu, Nanyao and Xu, C. Kevin and Zhu, Lei and Zhao, Yinghe and Díaz-Santos, Tanio and Charmandaris, Vassilis and Gao, Yu and Van der Werf, Paul P. and Privon, George C. and Inami, Hanae and Rigopoulou, Dimitra and Sanders, David B., E-mail: nanyao.lu@gmail.com},
abstractNote = {We present the results from Atacama Large Millimeter/submillimeter Array imaging in the [N ii] 205 μ m fine-structure line (hereafter [N ii]) and the underlying continuum of BRI 1202-0725, an interacting galaxy system at z = 4.7, consisting of a quasi-stellar object (QSO), a submillimeter galaxy (SMG), and two Ly α emitters, all within ∼25 kpc of the QSO. We detect the QSO and SMG in both [N ii] and continuum. At the ∼1″ (or 6.6 kpc) resolution, both the QSO and SMG are resolved in [N ii], with the de-convolved major axes of ∼9 and ∼14 kpc, respectively. In contrast, their continuum emissions are much more compact and unresolved even at an enhanced resolution of ∼0.″7. The ratio of the [N ii] flux to the existing CO(7−6) flux is used to constrain the dust temperature ( T {sub dust}) for a more accurate determination of the FIR luminosity L {sub FIR}. Our best estimated T {sub dust} equals 43 (±2) K for both galaxies (assuming an emissivity index β = 1.8). The resulting L {sub CO(7−6)}/ L {sub FIR} ratios are statistically consistent with that of local luminous infrared galaxies, confirming that L {sub CO(7−6)} traces the star formation (SF) rate (SFR) in these galaxies. We estimate that the ongoing SF of the QSO (SMG) has an SFR of 5.1 (6.9) × 10{sup 3} M {sub ⊙} yr{sup −1} (±30%) assuming Chabrier initial mass function, takes place within a diameter (at half maximum) of 1.3 (1.5) kpc, and will consume the existing 5 (5) × 10{sup 11} M {sub ⊙} of molecular gas in 10 (7) × 10{sup 7} years.},
doi = {10.3847/2041-8213/AA77FC},
journal = {Astrophysical Journal Letters},
number = 2,
volume = 842,
place = {United States},
year = {Tue Jun 20 00:00:00 EDT 2017},
month = {Tue Jun 20 00:00:00 EDT 2017}
}
  • We report interferometric imaging of [C II]({sup 2} P {sub 3/2}→{sup 2} P {sub 1/2}) and OH({sup 2}Π{sub 1/2} J = 3/2→1/2) emission toward the center of the galaxy protocluster associated with the z = 5.3 submillimeter galaxy (SMG) AzTEC-3, using the Atacama Large (sub)Millimeter Array (ALMA). We detect strong [C II], OH, and rest-frame 157.7 μm continuum emission toward the SMG. The [C II]({sup 2} P {sub 3/2}→{sup 2} P {sub 1/2}) emission is distributed over a scale of 3.9 kpc, implying a dynamical mass of 9.7 × 10{sup 10} M {sub ☉}, and a star formation rate (SFR)more » surface density of Σ{sub SFR} = 530 M {sub ☉} yr{sup –1} kpc{sup –2}. This suggests that AzTEC-3 forms stars at Σ{sub SFR} approaching the Eddington limit for radiation pressure supported disks. We find that the OH emission is slightly blueshifted relative to the [C II] line, which may indicate a molecular outflow associated with the peak phase of the starburst. We also detect and dynamically resolve [C II]({sup 2} P {sub 3/2}→{sup 2} P {sub 1/2}) emission over a scale of 7.5 kpc toward a triplet of Lyman-break galaxies with moderate UV-based SFRs in the protocluster at ∼95 kpc projected distance from the SMG. These galaxies are not detected in the continuum, suggesting far-infrared SFRs of <18-54 M {sub ☉} yr{sup –1}, consistent with a UV-based estimate of 22 M {sub ☉} yr{sup –1}. The spectral energy distribution of these galaxies is inconsistent with nearby spiral and starburst galaxies, but resembles those of dwarf galaxies. This is consistent with expectations for young starbursts without significant older stellar populations. This suggests that these galaxies are significantly metal-enriched, but not heavily dust-obscured, 'normal' star-forming galaxies at z > 5, showing that ALMA can detect the interstellar medium in 'typical' galaxies in the very early universe.« less
  • We study the properties of the interstellar medium in the interacting system BR1202-0725 at z = 4.7 via its [N II] and [C II] fine-structure line emission. This system consists of a QSO, a sub-mm galaxy (SMG), and two Lyα emitters (LAEs). Such a diversity in galaxy properties makes BR1202-0725 a unique laboratory of star formation and galaxy evolution at high redshift. We present ionized nitrogen ([N II] 205 μm) observations of this system, obtained with the IRAM Plateau de Bure Interferometer. We find no [N II] emission at the quasar location, but tentative [N II] line detections associated withmore » the SMG and one of the LAEs. Together with available ionized carbon ([C II] 158 μm) Atacama Large Millimeter Array observations of this system, we find the following: the [C II]/[N II] luminosity ratio is >5.5 for the QSO and the SMG, but it is as low as ∼2 in the LAE, suggesting that, in this source, most of the [C II] emission is associated with the ionized medium (H II regions) rather than the neutral one (photon-dominated regions). This study demonstrates the importance of combined studies of multiple fine-structure lines in order to pin down the physical properties of the interstellar medium in distant galaxies.« less
  • We present, for the first time, a statistical study of [N II] 205 {mu}m line emission for a large sample of local luminous infrared galaxies using Herschel Spectral and Photometric Imaging Receiver Fourier Transform Spectrometer (SPIRE FTS) data. For our sample of galaxies, we investigate the correlation between the [N II] luminosity (L{sub [N{sub II]}}) and the total infrared luminosity (L{sub IR}), as well as the dependence of L{sub [N{sub II]}}/L{sub IR} ratio on L{sub IR}, far-infrared colors (IRAS f{sub 60}/f{sub 100}), and the [O III] 88 {mu}m to [N II] luminosity ratio. We find that L{sub [N{sub II]}} correlatesmore » almost linearly with L{sub IR} for non-active galactic nucleus galaxies (all having L{sub IR} < 10{sup 12} L{sub Sun }) in our sample, which implies that L{sub [N{sub II]}} can serve as a star formation rate tracer which is particularly useful for high-redshift galaxies that will be observed with forthcoming submillimeter spectroscopic facilities such as the Atacama Large Millimeter/submillimeter Array. Our analysis shows that the deviation from the mean L{sub [N{sub II]}}-L{sub IR} relation correlates with tracers of the ionization parameter, which suggests that the scatter in this relation is mainly due to the variations in the hardness, and/or ionization parameter, of the ambient galactic UV field among the sources in our sample.« less
  • Exploiting the sensitivity and spatial resolution of the Atacama Large Millimeter/submillimeter Array, we have studied the morphology and the physical scale of the interstellar medium—both gas and dust—in SGP 38326, an unlensed pair of interacting starbursts at z = 4.425. SGP 38326 is the most luminous star bursting system known at z > 4, with a total IR luminosity of L {sub IR} ∼ 2.5 × 10{sup 13} L {sub ⊙} and a star formation rate of ∼ 4500 M {sub ⊙} yr{sup −1}. SGP 38326 also contains a molecular gas reservoir among the most massive yet found in themore » early universe, and it is the likely progenitor of a massive, red-and-dead elliptical galaxy at z ∼ 3. Probing scales of ∼0.″1 or ∼800 pc we find that the smooth distribution of the continuum emission from cool dust grains contrasts with the more irregular morphology of the gas, as traced by the [C ii] fine structure emission. The gas is also extended over larger physical scales than the dust. The velocity information provided by the resolved [C ii] emission reveals that the dynamics of the two interacting components of SGP 38326 are each compatible with disk-like, ordered rotation, but also reveals an ISM which is turbulent and unstable. Our observations support a scenario where at least a subset of the most distant extreme starbursts are highly dissipative mergers of gas-rich galaxies.« less
  • To better characterize the global star formation activity in a galaxy, one needs to know not only the star formation rate (SFR) but also the rest-frame, far-infrared color (e.g., the 60–100 μm color, C(60/100)) of the dust emission. The latter probes the average intensity of the dust heating radiation field and scales statistically with the effective SFR surface density in star-forming galaxies including (ultra-)luminous infrared galaxies ((U)LIRGs). To this end, here we exploit a new spectroscopic approach involving only two emission lines: CO(7–6) at 372 μm and [N ii] at 205 μm([N ii]{sub 205μm}). For local (U)LIRGs, the ratios ofmore » the CO(7–6) luminosity (L{sub CO(7–6)}) to the total infrared luminosity (L{sub IR}; 8–1000 μm) are fairly tightly distributed (to within ∼0.12 dex) and show little dependence on C(60/100). This makes L{sub CO(7–6)} a good SFR tracer, which is less contaminated by active galactic nuclei than L{sub IR} and may also be much less sensitive to metallicity than L{sub CO(1–0)}. Furthermore, the logarithmic [N ii]{sub 205μm}/CO(7–6) luminosity ratio depends fairly strongly (at a slope of ∼ −1.4) on C(60/100), with a modest scatter (∼0.23 dex). This makes it a useful estimator on C(60/100) with an implied uncertainty of ∼0.15 (or ≲4 K in the dust temperature (T{sub dust}) in the case of a graybody emission with T{sub dust} ≳ 30 K and a dust emissivity index β ≥ 1). Our locally calibrated SFR and C(60/100) estimators are shown to be consistent with the published data of (U)LIRGs of z up to ∼6.5.« less