skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-energy Neutrino Emission from Short Gamma-Ray Bursts: Prospects for Coincident Detection with Gravitational Waves

Abstract

We investigate current and future prospects for coincident detection of high-energy neutrinos and gravitational waves (GWs). Short gamma-ray bursts (SGRBs) are believed to originate from mergers of compact star binaries involving neutron stars. We estimate high-energy neutrino fluences from prompt emission, extended emission (EE), X-ray flares, and plateau emission, and we show that neutrino signals associated with the EE are the most promising. Assuming that the cosmic-ray loading factor is ∼10 and the Lorentz factor distribution is lognormal, we calculate the probability of neutrino detection from EE by current and future neutrino detectors, and we find that the quasi-simultaneous detection of high-energy neutrinos, gamma-rays, and GWs is possible with future instruments or even with current instruments for nearby SGRBs having EE. We also discuss stacking analyses that will also be useful with future experiments such as IceCube-Gen2.

Authors:
; ;  [1];  [2]
  1. Department of Physics, Pennsylvania State University, University Park, PA 16802 (United States)
  2. Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto, Kyoto 606-8502 (Japan)
Publication Date:
OSTI Identifier:
22654374
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal Letters; Journal Volume: 848; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; COSMIC GAMMA BURSTS; DISTRIBUTION; EMISSION; GAMMA RADIATION; GRAVITATIONAL WAVES; ICECUBE NEUTRINO DETECTOR; NEUTRINO DETECTION; NEUTRINOS; NEUTRON STARS; X RADIATION

Citation Formats

Kimura, Shigeo S., Murase, Kohta, Mészáros, Peter, and Kiuchi, Kenta. High-energy Neutrino Emission from Short Gamma-Ray Bursts: Prospects for Coincident Detection with Gravitational Waves. United States: N. p., 2017. Web. doi:10.3847/2041-8213/AA8D14.
Kimura, Shigeo S., Murase, Kohta, Mészáros, Peter, & Kiuchi, Kenta. High-energy Neutrino Emission from Short Gamma-Ray Bursts: Prospects for Coincident Detection with Gravitational Waves. United States. doi:10.3847/2041-8213/AA8D14.
Kimura, Shigeo S., Murase, Kohta, Mészáros, Peter, and Kiuchi, Kenta. 2017. "High-energy Neutrino Emission from Short Gamma-Ray Bursts: Prospects for Coincident Detection with Gravitational Waves". United States. doi:10.3847/2041-8213/AA8D14.
@article{osti_22654374,
title = {High-energy Neutrino Emission from Short Gamma-Ray Bursts: Prospects for Coincident Detection with Gravitational Waves},
author = {Kimura, Shigeo S. and Murase, Kohta and Mészáros, Peter and Kiuchi, Kenta},
abstractNote = {We investigate current and future prospects for coincident detection of high-energy neutrinos and gravitational waves (GWs). Short gamma-ray bursts (SGRBs) are believed to originate from mergers of compact star binaries involving neutron stars. We estimate high-energy neutrino fluences from prompt emission, extended emission (EE), X-ray flares, and plateau emission, and we show that neutrino signals associated with the EE are the most promising. Assuming that the cosmic-ray loading factor is ∼10 and the Lorentz factor distribution is lognormal, we calculate the probability of neutrino detection from EE by current and future neutrino detectors, and we find that the quasi-simultaneous detection of high-energy neutrinos, gamma-rays, and GWs is possible with future instruments or even with current instruments for nearby SGRBs having EE. We also discuss stacking analyses that will also be useful with future experiments such as IceCube-Gen2.},
doi = {10.3847/2041-8213/AA8D14},
journal = {Astrophysical Journal Letters},
number = 1,
volume = 848,
place = {United States},
year = 2017,
month =
}
  • Gravitational parity violation is a possibility motivated by particle physics, string theory, and loop quantum gravity. One effect of it is amplitude birefringence of gravitational waves, whereby left and right circularly polarized waves propagate at the same speed but with different amplitude evolution. Here we propose a test of this effect through coincident observations of gravitational waves and short gamma-ray bursts from binary mergers involving neutron stars. Such gravitational waves are highly left or right circularly polarized due to the geometry of the merger. Using localization information from the gamma-ray burst, ground-based gravitational wave detectors can measure the distance tomore » the source with reasonable accuracy. An electromagnetic determination of the redshift from an afterglow or host galaxy yields an independent measure of this distance. Gravitational parity violation would manifest itself as a discrepancy between these two distance measurements. We exemplify such a test by considering one specific effective theory that leads to such gravitational parity violation, Chern-Simons gravity. We show that the advanced LIGO-Virgo network and all-sky gamma-ray telescopes can be sensitive to the propagating sector of Chern-Simons gravitational parity violation to a level roughly 2 orders of magnitude better than current stationary constraints from the LAGEOS satellites.« less
  • High energy neutrino emission from gamma-ray bursts (GRBs) is discussed. In this paper, by using the simulation kit GEANT4, we calculate proton cooling efficiency including pion-multiplicity and proton-inelasticity in photomeson production. First, we estimate the maximum energy of accelerated protons in GRBs. Using the obtained results, neutrino flux from one burst and a diffuse neutrino background are evaluated quantitatively. We also take account of cooling processes of pion and muon, which are crucial for resulting neutrino spectra. We confirm the validity of analytic approximate treatments on GRB fiducial parameter sets, but also find that the effects of multiplicity and high-inelasticitymore » can be important on both proton cooling and resulting spectra in some cases. Finally, assuming that the GRB rate traces the star formation rate, we obtain a diffuse neutrino background spectrum from GRBs for specific parameter sets. We introduce the nonthermal baryon-loading factor, rather than assume that GRBs are main sources of ultra-high energy cosmic rays (UHECRs). We find that the obtained neutrino background can be comparable with the prediction of Waxman and Bahcall, although our ground in estimation is different from theirs. In this paper, we study on various parameters since there are many parameters in the model. The detection of high energy neutrinos from GRBs will be one of the strong evidences that protons are accelerated to very high energy in GRBs. Furthermore, the observations of a neutrino background has a possibility not only to test the internal shock model of GRBs but also to give us information about parameters in the model and whether GRBs are sources of UHECRs or not.« less
  • We discuss the GeV to TeV photon emission of gamma-ray bursts (GRBs) within the refreshed shock and the continuous injection scenarios, motivated by the observation of extended emission in a substantial fraction of short GRBs. In the first model we assume that the central engine promptly emits material with a range of Lorentz factors. When the fastest shell starts to decelerate, it drives a forward shock into the ambient medium and a reverse shock into the ejecta. These shocks are reenergized by the slower and later arriving material. In the second model we assume that there is a continued ejectionmore » of material over an extended time, and the continuously arriving new material keeps reenergizing the shocks formed by the preceding shells of ejecta. We calculate the synchrotron and synchrotron self-Compton radiation components for the forward and reverse shocks and find that prospective and current GeV-TeV range instruments such as CTA, HAWC, VERITAS, MAGIC, and HESS have a good chance of detecting afterglows of short bursts with extended emission, assuming a reasonable response time.« less
  • Gamma-ray bursts (GRBs) have the potential to produce the particle energies (up to 10{sup 21} eV) and energy budget (10{sup 44} erg yr{sup -1} Mpc{sup -3}) to accommodate the spectrum of the highest energy cosmic rays; on the other hand, there is no observational evidence that they accelerate hadrons. The Fermi Gamma-ray Space Telescope recently observed two bursts that exhibit a power-law high-energy extension of a typical (Band) photon spectrum that extends to {approx}30 GeV. On the basis of fireball phenomenology we argue that these two bursts, along with GRB941017 observed by EGRET in 1994, show indirect evidence for considerablemore » baryon loading. Since the detection of neutrinos is the only unambiguous way to establish that GRBs accelerate protons, we use two methods to estimate the neutrino flux produced when they interact with fireball photons to produce charged pions and neutrinos. While the number of events expected from the two Fermi bursts discussed is small, should GRBs be the sources of the observed cosmic rays, a GRB941017-like event that has a hadronic power-law tail extending to several tens of GeV will be detected by the IceCube neutrino telescope.« less
  • We discuss the high energy neutrino emission from gamma-ray bursts resulting from the earliest generation (''population III'') stars forming in the Universe, whose core collapses into a black hole. These gamma-ray bursts are expected to produce a highly relativistic, magnetically dominated jet, where protons can be accelerated to ultrahigh energies. These interact with the photons produced by the jet, leading to ultrahigh energy photomeson neutrinos as well as secondary leptons and photons. The photon luminosity and the shock properties, and thus the neutrino spectrum, depend on the mass of the black holes as well as on the density of themore » surrounding external gas. We calculate the individual source neutrino spectral fluxes and the expected diffuse neutrino flux for various source parameters and evolution scenarios. Both the individual and diffuse signals appear detectable in the 1-300 PeV range with current and planned neutrino detectors such as IceCube and ARIANNA, provided the black hole mass is in excess of 30-100 solar masses. This provides a possible test for the debated mass of the progenitor stellar objects, as well as a probe for the early cosmological environment and the formation rate of the earliest structures.« less