skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SUBPROTON-SCALE CASCADES IN SOLAR WIND TURBULENCE: DRIVEN HYBRID-KINETIC SIMULATIONS

Journal Article · · Astrophysical Journal Letters
 [1];  [2]; ;  [3]
  1. Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, D-85748 Garching (Germany)
  2. Physics Department “E. Fermi,” University of Pisa, Largo B. Pontecorvo 3, I-56127 Pisa (Italy)
  3. Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 (United States)

A long-lasting debate in space plasma physics concerns the nature of subproton-scale fluctuations in solar wind (SW) turbulence. Over the past decade, a series of theoretical and observational studies were presented in favor of either kinetic Alfvén wave (KAW) or whistler turbulence. Here, we investigate numerically the nature of the subproton-scale turbulent cascade for typical SW parameters by means of unprecedented high-resolution simulations of forced hybrid-kinetic turbulence in two real-space and three velocity-space dimensions. Our analysis suggests that small-scale turbulence in this model is dominated by KAWs at β ≳ 1 and by magnetosonic/whistler fluctuations at lower β . The spectral properties of the turbulence appear to be in good agreement with theoretical predictions. A tentative interpretation of this result in terms of relative changes in the damping rates of the different waves is also presented. Overall, the results raise interesting new questions about the properties and variability of subproton-scale turbulence in the SW, including its possible dependence on the plasma β , and call for detailed and extensive parametric explorations of driven kinetic turbulence in three dimensions.

OSTI ID:
22654340
Journal Information:
Astrophysical Journal Letters, Vol. 822, Issue 1; Other Information: Country of input: International Atomic Energy Agency (IAEA); ISSN 2041-8205
Country of Publication:
United States
Language:
English