skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SYMPATHETIC SOLAR FILAMENT ERUPTIONS

Abstract

The 2015 March 15 coronal mass ejection as one of the two that together drove the largest geomagnetic storm of solar cycle 24 so far was associated with sympathetic filament eruptions. We investigate the relations between the different filaments involved in the eruption. A surge-like small-scale filament motion is confirmed as the trigger that initiated the erupting filament with multi-wavelength observations and using a forced magnetic field extrapolation method. When the erupting filament moved to an open magnetic field region, it experienced an obvious acceleration process and was accompanied by a C-class flare and the rise of another larger filament that eventually failed to erupt. We measure the decay index of the background magnetic field, which presents a critical height of 118 Mm. Combining with a potential field source surface extrapolation method, we analyze the distributions of the large-scale magnetic field, which indicates that the open magnetic field region may provide a favorable condition for F2 rapid acceleration and have some relation with the largest solar storm. The comparison between the successful and failed filament eruptions suggests that the confining magnetic field plays an important role in the preconditions for an eruption.

Authors:
; ; ; ;  [1];  [2]
  1. State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China)
  2. Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)
Publication Date:
OSTI Identifier:
22654248
Resource Type:
Journal Article
Resource Relation:
Journal Name: Astrophysical Journal Letters; Journal Volume: 827; Journal Issue: 1; Other Information: Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
79 ASTROPHYSICS, COSMOLOGY AND ASTRONOMY; ACCELERATION; COMPARATIVE EVALUATIONS; DECAY; DISTRIBUTION; ERUPTION; EXTRAPOLATION; FILAMENTS; MAGNETIC FIELDS; MAGNETIC STORMS; MASS; SOLAR CYCLE; SUN; SURFACES; WAVELENGTHS

Citation Formats

Wang, Rui, Liu, Ying D., Zimovets, Ivan, Hu, Huidong, Yang, Zhongwei, and Dai, Xinghua, E-mail: liuxying@spaceweather.ac.cn. SYMPATHETIC SOLAR FILAMENT ERUPTIONS. United States: N. p., 2016. Web. doi:10.3847/2041-8205/827/1/L12.
Wang, Rui, Liu, Ying D., Zimovets, Ivan, Hu, Huidong, Yang, Zhongwei, & Dai, Xinghua, E-mail: liuxying@spaceweather.ac.cn. SYMPATHETIC SOLAR FILAMENT ERUPTIONS. United States. doi:10.3847/2041-8205/827/1/L12.
Wang, Rui, Liu, Ying D., Zimovets, Ivan, Hu, Huidong, Yang, Zhongwei, and Dai, Xinghua, E-mail: liuxying@spaceweather.ac.cn. Wed . "SYMPATHETIC SOLAR FILAMENT ERUPTIONS". United States. doi:10.3847/2041-8205/827/1/L12.
@article{osti_22654248,
title = {SYMPATHETIC SOLAR FILAMENT ERUPTIONS},
author = {Wang, Rui and Liu, Ying D. and Zimovets, Ivan and Hu, Huidong and Yang, Zhongwei and Dai, Xinghua, E-mail: liuxying@spaceweather.ac.cn},
abstractNote = {The 2015 March 15 coronal mass ejection as one of the two that together drove the largest geomagnetic storm of solar cycle 24 so far was associated with sympathetic filament eruptions. We investigate the relations between the different filaments involved in the eruption. A surge-like small-scale filament motion is confirmed as the trigger that initiated the erupting filament with multi-wavelength observations and using a forced magnetic field extrapolation method. When the erupting filament moved to an open magnetic field region, it experienced an obvious acceleration process and was accompanied by a C-class flare and the rise of another larger filament that eventually failed to erupt. We measure the decay index of the background magnetic field, which presents a critical height of 118 Mm. Combining with a potential field source surface extrapolation method, we analyze the distributions of the large-scale magnetic field, which indicates that the open magnetic field region may provide a favorable condition for F2 rapid acceleration and have some relation with the largest solar storm. The comparison between the successful and failed filament eruptions suggests that the confining magnetic field plays an important role in the preconditions for an eruption.},
doi = {10.3847/2041-8205/827/1/L12},
journal = {Astrophysical Journal Letters},
number = 1,
volume = 827,
place = {United States},
year = {Wed Aug 10 00:00:00 EDT 2016},
month = {Wed Aug 10 00:00:00 EDT 2016}
}
  • We report two sympathetic solar eruptions including a partial and a full flux rope eruption in a quadrupolar magnetic region where a large and a small filament resided above the middle and the east neutral lines, respectively. The large filament first rose slowly at a speed of 8 km s{sup -1} for 23 minutes; it then accelerated to 102 km s{sup -1}. Finally, this filament erupted successfully and caused a coronal mass ejection. During the slow rising phase, various evidence for breakout-like external reconnection has been identified at high and low temperature lines. The eruption of the small filament startedmore » around the end of the large filament's slow rising. This filament erupted partially, and no associated coronal mass ejection could be detected. Based on a potential field extrapolation, we find that the topology of the three-dimensional coronal field above the source region is composed of three low-lying lobes and a large overlying flux system, and a null point located between the middle lobe and the overlying antiparallel flux system. We propose a possible mechanism within the framework of the magnetic breakout model to interpret the sympathetic filament eruptions, in which the magnetic implosion mechanism is thought to be a possible link between the sympathetic eruptions, and the external reconnection at the null point transfers field lines from the middle lobe to the lateral lobes and thereby leads to the full (partial) eruption of the observed large (small) filament. Other possible mechanisms are also discussed briefly. We conclude that the structural properties of coronal fields are important for producing sympathetic eruptions.« less
  • We present for the first time detailed observations of three successive, interdependent filament eruptions that occurred one by one within 5 hr from different locations beyond the range of a single active region. The first eruption was observed from an active region and was associated with a coronal mass ejection (CME), during which diffuse and complex coronal dimmings formed, largely extending to the two other filaments located in quiet-Sun regions. Then, both quiescent filaments consecutively underwent the second and third eruptions, while the nearby dimmings were persistent. Comparing the result of a derived coronal magnetic configuration, the magnetic connectivity betweenmore » the dimmings suggested that they were caused by the joint effect of simple expansion of overlying loop systems forced by the first eruption, as well as by its erupting field interacting or reconnecting with the surrounding magnetic structures. Note that the dimming process in the first eruption indicated a weakening and partial removal of an overlying magnetic field constraint on the two other filaments, and thus one can physically connect these eruptions as sympathetic. It appears that the peculiar magnetic field configuration in our event was largely favorable to the occurrence of sympathetic filament eruptions. Because coronal dimmings are frequent and common phenomena in solar eruptions, especially in CME events, it is very likely that they represent a universal agent that can link consecutive eruptions nearby with sympathetic eruptions.« less
  • On 2005 August 5, two solar filaments erupted successively from different confined arcades underlying a common overarching multiple-arcade bipolar helmet streamer. We present detailed observations of these two events and identify them as sympathetic filament eruptions. The first (F1) is a small active-region filament located near the outskirts of the streamer arcade. It underwent a nonradial eruption, initially moving in the interior of the streamer arcade and resulting in an over-and-out coronal mass ejection. The second filament (F2), a larger quiescent one far away from F1, was clearly disturbed during the F1 eruption. It then underwent a very slow eruptionmore » and finally disappeared completely and permanently. Because two belt-shaped diffuse dimmings formed along the footprints of the streamer arcade in the first eruption and persisted throughout the complete disappearance of F2, the eruption series are interpreted as sympathetic: the simple expansion of the common streamer arcade forced by the F1 eruption weakened magnetic flux overlying F2 and thus led to its slow eruption, with the dimming formation indicating their physical connection. Our observations suggest that multiple-arcade bipolar helmet-streamer configurations are appropriate to producing sympathetic eruptions. Combined with the recent observations of unipolar-streamer sympathetic events, it appears that a multiple-arcade unipolar or bipolar helmet streamer can serve as a common magnetic configuration for sympathetic eruptions.« less
  • We investigate two sympathetic filament eruptions observed by the New Vacuum Solar Telescope on 2015 October 15. The full picture of the eruptions is obtained from the corresponding Solar Dynamics Observatory ( SDO )/Atmospheric Imaging Assembly (AIA) observations. The two filaments start from active region NOAA 12434 in the north and end in one large quiescent filament channel in the south. The left filament erupts first, followed by the right filament eruption about 10 minutes later. Clear twist structure and rotating motion are observed in both filaments during the eruption. Both eruptions failed, since the filaments first rise up, thenmore » flow toward the south and merge into the southern large quiescent filament. We also observe repeated activations of mini filaments below the right filament after its eruption. Using magnetic field models constructed based on SDO /HMI magnetograms via the flux rope insertion method, we find that the left filament eruption is likely to be triggered by kink instability, while the weakening of overlying magnetic fields due to magnetic reconnection at an X-point between the two filament systems might play an important role in the onset of the right filament eruption.« less
  • Failed filament eruptions not associated with a coronal mass ejection (CME) have been observed and reported as evidence for solar coronal field confinement on erupting flux ropes. In those events, each filament eventually returns to its origin on the solar surface. In this Letter, a new observation of two failed filament eruptions is reported which indicates that the mass of a confined filament can be ejected to places far from the original filament channel. The jetlike mass motions in the two failed filament eruptions are thought to be due to the asymmetry of the background coronal magnetic fields with respectmore » to the locations of the filament channels. The asymmetry of the coronal fields is confirmed by an extrapolation based on a potential field model. The obvious imbalance between the positive and negative magnetic flux (with a ratio of 1:3) in the bipolar active region is thought to be the direct cause of the formation of the asymmetric coronal fields. We think that the asymmetry of the background fields can not only influence the trajectories of ejecta, but also provide a relatively stronger confinement for flux rope eruptions than the symmetric background fields do.« less