skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: WE-AB-207A-07: A Planning CT-Guided Scatter Artifact Correction Method for CBCT Images

Abstract

Purpose: Cone beam computed tomography (CBCT) imaging is on increasing demand for high-performance image-guided radiotherapy such as online tumor delineation and dose calculation. However, the current CBCT imaging has severe scatter artifacts and its current clinical application is therefore limited to patient setup based mainly on the bony structures. This study’s purpose is to develop a CBCT artifact correction method. Methods: The proposed scatter correction method utilizes the planning CT to improve CBCT image quality. First, an image registration is used to match the planning CT with the CBCT to reduce the geometry difference between the two images. Then, the planning CT-based prior information is entered into the Bayesian deconvolution framework to iteratively perform a scatter artifact correction for the CBCT mages. This technique was evaluated using Catphan phantoms with multiple inserts. Contrast-to-noise ratios (CNR) and signal-to-noise ratios (SNR), and the image spatial nonuniformity (ISN) in selected volume of interests (VOIs) were calculated to assess the proposed correction method. Results: Post scatter correction, the CNR increased by a factor of 1.96, 3.22, 3.20, 3.46, 3.44, 1.97 and 1.65, and the SNR increased by a factor 1.05, 2.09, 1.71, 3.95, 2.52, 1.54 and 1.84 for the Air, PMP, LDPE, Polystryrene, Acrylic,more » Delrin and Teflon inserts, respectively. The ISN decreased from 21.1% to 4.7% in the corrected images. All values of CNR, SNR and ISN in the corrected CBCT image were much closer to those in the planning CT images. The results demonstrated that the proposed method reduces the relevant artifacts and recovers CT numbers. Conclusion: We have developed a novel CBCT artifact correction method based on CT image, and demonstrated that the proposed CT-guided correction method could significantly reduce scatter artifacts and improve the image quality. This method has great potential to correct CBCT images allowing its use in adaptive radiotherapy.« less

Authors:
; ; ; ; ;  [1]
  1. Emory University, Atlanta, GA (United States)
Publication Date:
OSTI Identifier:
22654121
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BIOMEDICAL RADIOGRAPHY; COMPUTERIZED TOMOGRAPHY; CORRECTIONS; IMAGE PROCESSING; IMAGES; PLANNING; SIGNAL-TO-NOISE RATIO

Citation Formats

Yang, X, Liu, T, Dong, X, Elder, E, Curran, W, and Dhabaan, A. WE-AB-207A-07: A Planning CT-Guided Scatter Artifact Correction Method for CBCT Images. United States: N. p., 2016. Web. doi:10.1118/1.4957760.
Yang, X, Liu, T, Dong, X, Elder, E, Curran, W, & Dhabaan, A. WE-AB-207A-07: A Planning CT-Guided Scatter Artifact Correction Method for CBCT Images. United States. doi:10.1118/1.4957760.
Yang, X, Liu, T, Dong, X, Elder, E, Curran, W, and Dhabaan, A. Wed . "WE-AB-207A-07: A Planning CT-Guided Scatter Artifact Correction Method for CBCT Images". United States. doi:10.1118/1.4957760.
@article{osti_22654121,
title = {WE-AB-207A-07: A Planning CT-Guided Scatter Artifact Correction Method for CBCT Images},
author = {Yang, X and Liu, T and Dong, X and Elder, E and Curran, W and Dhabaan, A},
abstractNote = {Purpose: Cone beam computed tomography (CBCT) imaging is on increasing demand for high-performance image-guided radiotherapy such as online tumor delineation and dose calculation. However, the current CBCT imaging has severe scatter artifacts and its current clinical application is therefore limited to patient setup based mainly on the bony structures. This study’s purpose is to develop a CBCT artifact correction method. Methods: The proposed scatter correction method utilizes the planning CT to improve CBCT image quality. First, an image registration is used to match the planning CT with the CBCT to reduce the geometry difference between the two images. Then, the planning CT-based prior information is entered into the Bayesian deconvolution framework to iteratively perform a scatter artifact correction for the CBCT mages. This technique was evaluated using Catphan phantoms with multiple inserts. Contrast-to-noise ratios (CNR) and signal-to-noise ratios (SNR), and the image spatial nonuniformity (ISN) in selected volume of interests (VOIs) were calculated to assess the proposed correction method. Results: Post scatter correction, the CNR increased by a factor of 1.96, 3.22, 3.20, 3.46, 3.44, 1.97 and 1.65, and the SNR increased by a factor 1.05, 2.09, 1.71, 3.95, 2.52, 1.54 and 1.84 for the Air, PMP, LDPE, Polystryrene, Acrylic, Delrin and Teflon inserts, respectively. The ISN decreased from 21.1% to 4.7% in the corrected images. All values of CNR, SNR and ISN in the corrected CBCT image were much closer to those in the planning CT images. The results demonstrated that the proposed method reduces the relevant artifacts and recovers CT numbers. Conclusion: We have developed a novel CBCT artifact correction method based on CT image, and demonstrated that the proposed CT-guided correction method could significantly reduce scatter artifacts and improve the image quality. This method has great potential to correct CBCT images allowing its use in adaptive radiotherapy.},
doi = {10.1118/1.4957760},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: Image artifacts are usually evaluated qualitatively via visual observation of the reconstructed images, which is susceptible to subjective factors due to the lack of an objective evaluation criterion. In this work, we propose a Helgason-Ludwig consistency condition (HLCC) based evaluation method to quantify the severity level of different image artifacts in dental CBCT. Methods: Our evaluation method consists of four step: 1) Acquire Cone beam CT(CBCT) projection; 2) Convert 3D CBCT projection to fan-beam projection by extracting its central plane projection; 3) Convert fan-beam projection to parallel-beam projection utilizing sinogram-based rebinning algorithm or detail-based rebinning algorithm; 4) Obtain HLCCmore » profile by integrating parallel-beam projection per view and calculate wave percentage and variance of the HLCC profile, which can be used to describe the severity level of image artifacts. Results: Several sets of dental CBCT projections containing only one type of artifact (i.e. geometry, scatter, beam hardening, lag and noise artifact), were simulated using gDRR, a GPU tool developed for efficient, accurate, and realistic simulation of CBCT Projections. These simulated CBCT projections were used to test our proposed method. HLCC profile wave percentage and variance induced by geometry distortion are about 3∼21 times and 16∼393 times as large as that of the artifact-free projection, respectively. The increase factor of wave percentage and variance are 6 and133 times for beam hardening, 19 and 1184 times for scatter, and 4 and16 times for lag artifacts, respectively. In contrast, for noisy projection the wave percentage, variance and inconsistency level are almost the same with those of the noise-free one. Conclusion: We have proposed a quantitative evaluation method of image artifact based on HLCC theory. According to our simulation results, the severity of different artifact types is found to be in a following order: Scatter>Geometry>Beam hardening>Lag>Noise>Artifact-free in dental CBCT.« less
  • Purpose: To improve CBCT image quality for image-guided radiotherapy by applying advanced reconstruction algorithms to overcome scatter, noise, and artifact limitations Methods: CBCT is used extensively for patient setup in radiotherapy. However, image quality generally falls short of diagnostic CT, limiting soft-tissue based positioning and potential applications such as adaptive radiotherapy. The conventional TrueBeam CBCT reconstructor uses a basic scatter correction and FDK reconstruction, resulting in residual scatter artifacts, suboptimal image noise characteristics, and other artifacts like cone-beam artifacts. We have developed an advanced scatter correction that uses a finite-element solver (AcurosCTS) to model the behavior of photons as theymore » pass (and scatter) through the object. Furthermore, iterative reconstruction is applied to the scatter-corrected projections, enforcing data consistency with statistical weighting and applying an edge-preserving image regularizer to reduce image noise. The combined algorithms have been implemented on a GPU. CBCT projections from clinically operating TrueBeam systems have been used to compare image quality between the conventional and improved reconstruction methods. Planning CT images of the same patients have also been compared. Results: The advanced scatter correction removes shading and inhomogeneity artifacts, reducing the scatter artifact from 99.5 HU to 13.7 HU in a typical pelvis case. Iterative reconstruction provides further benefit by reducing image noise and eliminating streak artifacts, thereby improving soft-tissue visualization. In a clinical head and pelvis CBCT, the noise was reduced by 43% and 48%, respectively, with no change in spatial resolution (assessed visually). Additional benefits include reduction of cone-beam artifacts and reduction of metal artifacts due to intrinsic downweighting of corrupted rays. Conclusion: The combination of an advanced scatter correction with iterative reconstruction substantially improves CBCT image quality. It is anticipated that clinically acceptable reconstruction times will result from a multi-GPU implementation (the algorithms are under active development and not yet commercially available). All authors are employees of and (may) own stock of Varian Medical Systems.« less
  • Purpose: A moving blocker based strategy has shown promising results for scatter correction in cone-beam computed tomography (CBCT). Different geometry designs and moving speeds of the blocker affect its performance in image reconstruction accuracy. The goal of this work is to optimize the geometric design and moving speed of the moving blocker system through experimental evaluations. Methods: An Elekta Synergy XVI system and an anthropomorphic pelvis phantom CIRS 801-P were used for our experiment. A blocker consisting of lead strips was inserted between the x-ray source and the phantom moving back and forth along rotation axis to measure the scattermore » signal. Accoriding to our Monte Carlo simulation results, three blockers were used, which have the same lead strip width 3.2mm and different gap between neighboring lead strips, 3.2, 6.4 and 9.6mm. For each blocker, three moving speeds were evaluated, 10, 20 and 30 pixels per projection (on the detector plane). Scatter signal in the unblocked region was estimated by cubic B-spline based interpolation from the blocked region. CBCT image was reconstructed by a total variation (TV) based algebraic iterative reconstruction (ART) algorithm from the partially blocked projection data. Reconstruction accuracy in each condition is quantified as CT number error of region of interest (ROI) by comparing to a CBCT reconstructed image from analytically simulated unblocked and scatter free projection data. Results: Highest reconstruction accuracy is achieved when the blocker width is 3.2 mm, the gap between neighboring lead strips is 9.6 mm and the moving speed is 20 pixels per projection. RMSE of the CT number of ROIs can be reduced from 436 to 27. Conclusions: Image reconstruction accuracy is greatly affected by the geometry design of the blocker. The moving speed does not have a very strong effect on reconstruction result if it is over 20 pixels per projection.« less
  • Purpose: Reducing x-ray exposure and speeding up data acquisition motived studies on projection data undersampling. It is an important question that for a given undersampling ratio, what the optimal undersampling approach is. In this study, we propose a new undersampling scheme: random-ray undersampling. We will mathematically analyze its projection matrix properties and demonstrate its advantages. We will also propose a new reconstruction method that simultaneously performs CT image reconstruction and projection domain data restoration. Methods: By representing projection operator under the basis of singular vectors of full projection operator, matrix representations for an undersampling case can be generated and numericalmore » singular value decomposition can be performed. We compared properties of matrices among three undersampling approaches: regular-view undersampling, regular-ray undersampling, and the proposed random-ray undersampling. To accomplish CT reconstruction for random undersampling, we developed a novel method that iteratively performs CT reconstruction and missing projection data restoration via regularization approaches. Results: For a given undersampling ratio, random-ray undersampling preserved mathematical properties of full projection operator better than the other two approaches. This translates to advantages of reconstructing CT images at lower errors. Different types of image artifacts were observed depending on undersampling strategies, which were ascribed to the unique singular vectors of the sampling operators in the image domain. We tested the proposed reconstruction algorithm on a Forbid phantom with only 30% of the projection data randomly acquired. Reconstructed image error was reduced from 9.4% in a TV method to 7.6% in the proposed method. Conclusion: The proposed random-ray undersampling is mathematically advantageous over other typical undersampling approaches. It may permit better image reconstruction at the same undersampling ratio. The novel algorithm suitable for this random-ray undersampling was able to reconstruct high-quality images.« less
  • Purpose: To reduce cone beam CT (CBCT) imaging dose, we previously proposed a progressive dose control (PDC) scheme to employ temporal correlation between CBCT images at different fractions for image quality enhancement. A temporal non-local means (TNLM) method was developed to enhance quality of a new low-dose CBCT using existing high-quality CBCT. To enhance a voxel value, the TNLM method searches for similar voxels in a window. Due to patient deformation among the two CBCTs, a large searching window was required, reducing image quality and computational efficiency. This abstract proposes a deformation-assisted TNLM (DA-TNLM) method to solve this problem. Methods:more » For a low-dose CBCT to be enhanced using a high-quality CBCT, we first performed deformable image registration between the low-dose CBCT and the high-quality CBCT to approximately establish voxel correspondence between the two. A searching window for a voxel was then set based on the deformation vector field. Specifically, the search window for each voxel was shifted by the deformation vector. A TNLM step was then applied using only voxels within this determined window to correct image intensity at the low-dose CBCT. Results: We have tested the proposed scheme on simulated CIRS phantom data and real patient data. The CITS phantom was scanned on Varian onboard imaging CBCT system with coach shifting and dose reducing for each time. The real patient data was acquired in four fractions with dose reduced from standard CBCT dose to 12.5% of standard dose. It was found that the DA-TNLM method can reduce total dose by over 75% on average in the first four fractions. Conclusion: We have developed a PDC scheme which can enhance the quality of image scanned at low dose using a DA-TNLM method. Tests in phantom and patient studies demonstrated promising results.« less