skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: WE-AB-207A-07: A Planning CT-Guided Scatter Artifact Correction Method for CBCT Images

Abstract

Purpose: Cone beam computed tomography (CBCT) imaging is on increasing demand for high-performance image-guided radiotherapy such as online tumor delineation and dose calculation. However, the current CBCT imaging has severe scatter artifacts and its current clinical application is therefore limited to patient setup based mainly on the bony structures. This study’s purpose is to develop a CBCT artifact correction method. Methods: The proposed scatter correction method utilizes the planning CT to improve CBCT image quality. First, an image registration is used to match the planning CT with the CBCT to reduce the geometry difference between the two images. Then, the planning CT-based prior information is entered into the Bayesian deconvolution framework to iteratively perform a scatter artifact correction for the CBCT mages. This technique was evaluated using Catphan phantoms with multiple inserts. Contrast-to-noise ratios (CNR) and signal-to-noise ratios (SNR), and the image spatial nonuniformity (ISN) in selected volume of interests (VOIs) were calculated to assess the proposed correction method. Results: Post scatter correction, the CNR increased by a factor of 1.96, 3.22, 3.20, 3.46, 3.44, 1.97 and 1.65, and the SNR increased by a factor 1.05, 2.09, 1.71, 3.95, 2.52, 1.54 and 1.84 for the Air, PMP, LDPE, Polystryrene, Acrylic,more » Delrin and Teflon inserts, respectively. The ISN decreased from 21.1% to 4.7% in the corrected images. All values of CNR, SNR and ISN in the corrected CBCT image were much closer to those in the planning CT images. The results demonstrated that the proposed method reduces the relevant artifacts and recovers CT numbers. Conclusion: We have developed a novel CBCT artifact correction method based on CT image, and demonstrated that the proposed CT-guided correction method could significantly reduce scatter artifacts and improve the image quality. This method has great potential to correct CBCT images allowing its use in adaptive radiotherapy.« less

Authors:
; ; ; ; ;  [1]
  1. Emory University, Atlanta, GA (United States)
Publication Date:
OSTI Identifier:
22654121
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BIOMEDICAL RADIOGRAPHY; COMPUTERIZED TOMOGRAPHY; CORRECTIONS; IMAGE PROCESSING; IMAGES; PLANNING; SIGNAL-TO-NOISE RATIO

Citation Formats

Yang, X, Liu, T, Dong, X, Elder, E, Curran, W, and Dhabaan, A. WE-AB-207A-07: A Planning CT-Guided Scatter Artifact Correction Method for CBCT Images. United States: N. p., 2016. Web. doi:10.1118/1.4957760.
Yang, X, Liu, T, Dong, X, Elder, E, Curran, W, & Dhabaan, A. WE-AB-207A-07: A Planning CT-Guided Scatter Artifact Correction Method for CBCT Images. United States. doi:10.1118/1.4957760.
Yang, X, Liu, T, Dong, X, Elder, E, Curran, W, and Dhabaan, A. 2016. "WE-AB-207A-07: A Planning CT-Guided Scatter Artifact Correction Method for CBCT Images". United States. doi:10.1118/1.4957760.
@article{osti_22654121,
title = {WE-AB-207A-07: A Planning CT-Guided Scatter Artifact Correction Method for CBCT Images},
author = {Yang, X and Liu, T and Dong, X and Elder, E and Curran, W and Dhabaan, A},
abstractNote = {Purpose: Cone beam computed tomography (CBCT) imaging is on increasing demand for high-performance image-guided radiotherapy such as online tumor delineation and dose calculation. However, the current CBCT imaging has severe scatter artifacts and its current clinical application is therefore limited to patient setup based mainly on the bony structures. This study’s purpose is to develop a CBCT artifact correction method. Methods: The proposed scatter correction method utilizes the planning CT to improve CBCT image quality. First, an image registration is used to match the planning CT with the CBCT to reduce the geometry difference between the two images. Then, the planning CT-based prior information is entered into the Bayesian deconvolution framework to iteratively perform a scatter artifact correction for the CBCT mages. This technique was evaluated using Catphan phantoms with multiple inserts. Contrast-to-noise ratios (CNR) and signal-to-noise ratios (SNR), and the image spatial nonuniformity (ISN) in selected volume of interests (VOIs) were calculated to assess the proposed correction method. Results: Post scatter correction, the CNR increased by a factor of 1.96, 3.22, 3.20, 3.46, 3.44, 1.97 and 1.65, and the SNR increased by a factor 1.05, 2.09, 1.71, 3.95, 2.52, 1.54 and 1.84 for the Air, PMP, LDPE, Polystryrene, Acrylic, Delrin and Teflon inserts, respectively. The ISN decreased from 21.1% to 4.7% in the corrected images. All values of CNR, SNR and ISN in the corrected CBCT image were much closer to those in the planning CT images. The results demonstrated that the proposed method reduces the relevant artifacts and recovers CT numbers. Conclusion: We have developed a novel CBCT artifact correction method based on CT image, and demonstrated that the proposed CT-guided correction method could significantly reduce scatter artifacts and improve the image quality. This method has great potential to correct CBCT images allowing its use in adaptive radiotherapy.},
doi = {10.1118/1.4957760},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: Image artifacts are usually evaluated qualitatively via visual observation of the reconstructed images, which is susceptible to subjective factors due to the lack of an objective evaluation criterion. In this work, we propose a Helgason-Ludwig consistency condition (HLCC) based evaluation method to quantify the severity level of different image artifacts in dental CBCT. Methods: Our evaluation method consists of four step: 1) Acquire Cone beam CT(CBCT) projection; 2) Convert 3D CBCT projection to fan-beam projection by extracting its central plane projection; 3) Convert fan-beam projection to parallel-beam projection utilizing sinogram-based rebinning algorithm or detail-based rebinning algorithm; 4) Obtain HLCCmore » profile by integrating parallel-beam projection per view and calculate wave percentage and variance of the HLCC profile, which can be used to describe the severity level of image artifacts. Results: Several sets of dental CBCT projections containing only one type of artifact (i.e. geometry, scatter, beam hardening, lag and noise artifact), were simulated using gDRR, a GPU tool developed for efficient, accurate, and realistic simulation of CBCT Projections. These simulated CBCT projections were used to test our proposed method. HLCC profile wave percentage and variance induced by geometry distortion are about 3∼21 times and 16∼393 times as large as that of the artifact-free projection, respectively. The increase factor of wave percentage and variance are 6 and133 times for beam hardening, 19 and 1184 times for scatter, and 4 and16 times for lag artifacts, respectively. In contrast, for noisy projection the wave percentage, variance and inconsistency level are almost the same with those of the noise-free one. Conclusion: We have proposed a quantitative evaluation method of image artifact based on HLCC theory. According to our simulation results, the severity of different artifact types is found to be in a following order: Scatter>Geometry>Beam hardening>Lag>Noise>Artifact-free in dental CBCT.« less
  • Purpose: To improve CBCT image quality for image-guided radiotherapy by applying advanced reconstruction algorithms to overcome scatter, noise, and artifact limitations Methods: CBCT is used extensively for patient setup in radiotherapy. However, image quality generally falls short of diagnostic CT, limiting soft-tissue based positioning and potential applications such as adaptive radiotherapy. The conventional TrueBeam CBCT reconstructor uses a basic scatter correction and FDK reconstruction, resulting in residual scatter artifacts, suboptimal image noise characteristics, and other artifacts like cone-beam artifacts. We have developed an advanced scatter correction that uses a finite-element solver (AcurosCTS) to model the behavior of photons as theymore » pass (and scatter) through the object. Furthermore, iterative reconstruction is applied to the scatter-corrected projections, enforcing data consistency with statistical weighting and applying an edge-preserving image regularizer to reduce image noise. The combined algorithms have been implemented on a GPU. CBCT projections from clinically operating TrueBeam systems have been used to compare image quality between the conventional and improved reconstruction methods. Planning CT images of the same patients have also been compared. Results: The advanced scatter correction removes shading and inhomogeneity artifacts, reducing the scatter artifact from 99.5 HU to 13.7 HU in a typical pelvis case. Iterative reconstruction provides further benefit by reducing image noise and eliminating streak artifacts, thereby improving soft-tissue visualization. In a clinical head and pelvis CBCT, the noise was reduced by 43% and 48%, respectively, with no change in spatial resolution (assessed visually). Additional benefits include reduction of cone-beam artifacts and reduction of metal artifacts due to intrinsic downweighting of corrupted rays. Conclusion: The combination of an advanced scatter correction with iterative reconstruction substantially improves CBCT image quality. It is anticipated that clinically acceptable reconstruction times will result from a multi-GPU implementation (the algorithms are under active development and not yet commercially available). All authors are employees of and (may) own stock of Varian Medical Systems.« less
  • Purpose: A moving blocker based strategy has shown promising results for scatter correction in cone-beam computed tomography (CBCT). Different geometry designs and moving speeds of the blocker affect its performance in image reconstruction accuracy. The goal of this work is to optimize the geometric design and moving speed of the moving blocker system through experimental evaluations. Methods: An Elekta Synergy XVI system and an anthropomorphic pelvis phantom CIRS 801-P were used for our experiment. A blocker consisting of lead strips was inserted between the x-ray source and the phantom moving back and forth along rotation axis to measure the scattermore » signal. Accoriding to our Monte Carlo simulation results, three blockers were used, which have the same lead strip width 3.2mm and different gap between neighboring lead strips, 3.2, 6.4 and 9.6mm. For each blocker, three moving speeds were evaluated, 10, 20 and 30 pixels per projection (on the detector plane). Scatter signal in the unblocked region was estimated by cubic B-spline based interpolation from the blocked region. CBCT image was reconstructed by a total variation (TV) based algebraic iterative reconstruction (ART) algorithm from the partially blocked projection data. Reconstruction accuracy in each condition is quantified as CT number error of region of interest (ROI) by comparing to a CBCT reconstructed image from analytically simulated unblocked and scatter free projection data. Results: Highest reconstruction accuracy is achieved when the blocker width is 3.2 mm, the gap between neighboring lead strips is 9.6 mm and the moving speed is 20 pixels per projection. RMSE of the CT number of ROIs can be reduced from 436 to 27. Conclusions: Image reconstruction accuracy is greatly affected by the geometry design of the blocker. The moving speed does not have a very strong effect on reconstruction result if it is over 20 pixels per projection.« less
  • Results from the application of a modified dual photopeak window (DPW) scatter correction method to Monte Carlo simulated T1-201 emission images are presented. In the Monte Carlo investigation, individual simulations were performed for six radiation emissions of T1-201. For each emission, point sources of T1-201 were imaged at various locations i na water-filled elliptical tub phantom using three energy windows: two 12% windows abutted at 72 keV and a third 10 keV window placed to the right of the photopeak window (95.001 keV - 105.000 keV). The third window was used to estimate the spilldown contribution from the T1-201 gammamore » rays in each of the two photopeak windows. Using the corrected counts in these two windows, the DPW method was applied to each point source image to estimate the scatter distribution. For point source images in both homogeneous and non-homogeneous attenuating media, the application of this modified version of DPW resulted in an approximately six-fold reduction in the scatter fraction and an excellent agreement of the shape of the tails between the estimated scatter distribution and the Monte Carlo-simulated truth. This method was also applied to two views of an extended cardiac distribution within an anthropomorphic phantom, again, resulting in at least a six-fold improvement between the scatter estimate and the Monte Carlo-simulated true scatter.« less
  • Purpose: To establish a method to evaluate the dosimetric impact of anatomic changes in head and neck patients during proton therapy by using scatter-corrected cone-beam CT (CBCT) images. Methods: The water equivalent path length (WEPL) was calculated to the distal edge of PTV contours by using tomographic images available for six head and neck patients received photon therapy. The proton range variation was measured by calculating the difference between the distal WEPLs calculated with the planning CT and weekly treatment CBCT images. By performing an automatic rigid registration, six degrees-of-freedom (DOF) correction was made to the CBCT images to accountmore » for the patient setup uncertainty. For accurate WEPL calculations, an existing CBCT scatter correction algorithm, whose performance was already proven for phantom images, was calibrated for head and neck patient images. Specifically, two different image similarity measures, mutual information (MI) and mean square error (MSE), were tested for the deformable image registration (DIR) in the CBCT scatter correction algorithm. Results: The impact of weight loss was reflected in the distal WEPL differences with the aid of the automatic rigid registration reducing the influence of patient setup uncertainty on the WEPL calculation results. The WEPL difference averaged over distal area was 2.9 ± 2.9 (mm) across all fractions of six patients and its maximum, mostly found at the last available fraction, was 6.2 ± 3.4 (mm). The MSE-based DIR successfully registered each treatment CBCT image to the planning CT image. On the other hand, the MI-based DIR deformed the skin voxels in the planning CT image to the immobilization mask in the treatment CBCT image, most of which was cropped out of the planning CT image. Conclusion: The dosimetric impact of anatomic changes was evaluated by calculating the distal WEPL difference with the existing scatter-correction algorithm appropriately calibrated. Jihun Kim, Yang-Kyun Park, Gregory Sharp, and Brian Winey have received grant support from the NCI Federal Share of program income earned by Massachusetts General Hospital on C06 CA059267, Proton Therapy Research and Treatment Center.« less