skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: WE-AB-207A-04: Random Undersampled Cone Beam CT: Theoretical Analysis and a Novel Reconstruction Method

Abstract

Purpose: Reducing x-ray exposure and speeding up data acquisition motived studies on projection data undersampling. It is an important question that for a given undersampling ratio, what the optimal undersampling approach is. In this study, we propose a new undersampling scheme: random-ray undersampling. We will mathematically analyze its projection matrix properties and demonstrate its advantages. We will also propose a new reconstruction method that simultaneously performs CT image reconstruction and projection domain data restoration. Methods: By representing projection operator under the basis of singular vectors of full projection operator, matrix representations for an undersampling case can be generated and numerical singular value decomposition can be performed. We compared properties of matrices among three undersampling approaches: regular-view undersampling, regular-ray undersampling, and the proposed random-ray undersampling. To accomplish CT reconstruction for random undersampling, we developed a novel method that iteratively performs CT reconstruction and missing projection data restoration via regularization approaches. Results: For a given undersampling ratio, random-ray undersampling preserved mathematical properties of full projection operator better than the other two approaches. This translates to advantages of reconstructing CT images at lower errors. Different types of image artifacts were observed depending on undersampling strategies, which were ascribed to the unique singular vectorsmore » of the sampling operators in the image domain. We tested the proposed reconstruction algorithm on a Forbid phantom with only 30% of the projection data randomly acquired. Reconstructed image error was reduced from 9.4% in a TV method to 7.6% in the proposed method. Conclusion: The proposed random-ray undersampling is mathematically advantageous over other typical undersampling approaches. It may permit better image reconstruction at the same undersampling ratio. The novel algorithm suitable for this random-ray undersampling was able to reconstruct high-quality images.« less

Authors:
; ;  [1];  [2]
  1. The University of Texas Southwestern Medical Center, Dallas, TX (United States)
  2. The University of Texas at Dallas, Dallas, TX (United States)
Publication Date:
OSTI Identifier:
22654118
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
61 RADIATION PROTECTION AND DOSIMETRY; 60 APPLIED LIFE SCIENCES; BIOLOGICAL RECOVERY; COMPUTERIZED TOMOGRAPHY; DATA ACQUISITION; IMAGE PROCESSING; MATRICES; RANDOMNESS; X RADIATION

Citation Formats

Shen, C, Chen, L, Jia, X, and Lou, Y. WE-AB-207A-04: Random Undersampled Cone Beam CT: Theoretical Analysis and a Novel Reconstruction Method. United States: N. p., 2016. Web. doi:10.1118/1.4957757.
Shen, C, Chen, L, Jia, X, & Lou, Y. WE-AB-207A-04: Random Undersampled Cone Beam CT: Theoretical Analysis and a Novel Reconstruction Method. United States. doi:10.1118/1.4957757.
Shen, C, Chen, L, Jia, X, and Lou, Y. 2016. "WE-AB-207A-04: Random Undersampled Cone Beam CT: Theoretical Analysis and a Novel Reconstruction Method". United States. doi:10.1118/1.4957757.
@article{osti_22654118,
title = {WE-AB-207A-04: Random Undersampled Cone Beam CT: Theoretical Analysis and a Novel Reconstruction Method},
author = {Shen, C and Chen, L and Jia, X and Lou, Y},
abstractNote = {Purpose: Reducing x-ray exposure and speeding up data acquisition motived studies on projection data undersampling. It is an important question that for a given undersampling ratio, what the optimal undersampling approach is. In this study, we propose a new undersampling scheme: random-ray undersampling. We will mathematically analyze its projection matrix properties and demonstrate its advantages. We will also propose a new reconstruction method that simultaneously performs CT image reconstruction and projection domain data restoration. Methods: By representing projection operator under the basis of singular vectors of full projection operator, matrix representations for an undersampling case can be generated and numerical singular value decomposition can be performed. We compared properties of matrices among three undersampling approaches: regular-view undersampling, regular-ray undersampling, and the proposed random-ray undersampling. To accomplish CT reconstruction for random undersampling, we developed a novel method that iteratively performs CT reconstruction and missing projection data restoration via regularization approaches. Results: For a given undersampling ratio, random-ray undersampling preserved mathematical properties of full projection operator better than the other two approaches. This translates to advantages of reconstructing CT images at lower errors. Different types of image artifacts were observed depending on undersampling strategies, which were ascribed to the unique singular vectors of the sampling operators in the image domain. We tested the proposed reconstruction algorithm on a Forbid phantom with only 30% of the projection data randomly acquired. Reconstructed image error was reduced from 9.4% in a TV method to 7.6% in the proposed method. Conclusion: The proposed random-ray undersampling is mathematically advantageous over other typical undersampling approaches. It may permit better image reconstruction at the same undersampling ratio. The novel algorithm suitable for this random-ray undersampling was able to reconstruct high-quality images.},
doi = {10.1118/1.4957757},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: Cone-beam CT (CBCT) plays an important role in image guided radiation therapy (IGRT). However, the large radiation dose from serial CBCT scans in most IGRT procedures raises a clinical concern, especially for pediatric patients who are essentially excluded from receiving IGRT for this reason. The goal of this work is to develop a fast GPU-based algorithm to reconstruct CBCT from undersampled and noisy projection data so as to lower the imaging dose. Methods: The CBCT is reconstructed by minimizing an energy functional consisting of a data fidelity term and a total variation regularization term. The authors developed a GPU-friendlymore » version of the forward-backward splitting algorithm to solve this model. A multigrid technique is also employed. Results: It is found that 20-40 x-ray projections are sufficient to reconstruct images with satisfactory quality for IGRT. The reconstruction time ranges from 77 to 130 s on an NVIDIA Tesla C1060 (NVIDIA, Santa Clara, CA) GPU card, depending on the number of projections used, which is estimated about 100 times faster than similar iterative reconstruction approaches. Moreover, phantom studies indicate that the algorithm enables the CBCT to be reconstructed under a scanning protocol with as low as 0.1 mA s/projection. Comparing with currently widely used full-fan head and neck scanning protocol of {approx}360 projections with 0.4 mA s/projection, it is estimated that an overall 36-72 times dose reduction has been achieved in our fast CBCT reconstruction algorithm. Conclusions: This work indicates that the developed GPU-based CBCT reconstruction algorithm is capable of lowering imaging dose considerably. The high computation efficiency in this algorithm makes the iterative CBCT reconstruction approach applicable in real clinical environments.« less
  • Purpose: The purpose of this study is to propose a new concept of four-dimensional (4D) cone-beam CT (CBCT) reconstruction for non-periodic organ motion using the Time-ordered Chain Graph Model (TCGM), and to compare the reconstructed results with the previously proposed methods, the total variation-based compressed sensing (TVCS) and prior-image constrained compressed sensing (PICCS). Methods: CBCT reconstruction method introduced in this study consisted of maximum a posteriori (MAP) iterative reconstruction combined with a regularization term derived from a concept of TCGM, which includes a constraint coming from the images of neighbouring time-phases. The time-ordered image series were concurrently reconstructed in themore » MAP iterative reconstruction framework. Angular range of projections for each time-phase was 90 degrees for TCGM and PICCS, and 200 degrees for TVCS. Two kinds of projection data, an elliptic-cylindrical digital phantom data and two clinical patients’ data, were used for reconstruction. The digital phantom contained an air sphere moving 3 cm along longitudinal axis, and temporal resolution of each method was evaluated by measuring the penumbral width of reconstructed moving air sphere. The clinical feasibility of non-periodic time-ordered 4D CBCT reconstruction was also examined using projection data of prostate cancer patients. Results: The results of reconstructed digital phantom shows that the penumbral widths of TCGM yielded the narrowest result; PICCS and TCGM were 10.6% and 17.4% narrower than that of TVCS, respectively. This suggests that the TCGM has the better temporal resolution than the others. Patients’ CBCT projection data were also reconstructed and all three reconstructed results showed motion of rectal gas and stool. The result of TCGM provided visually clearer and less blurring images. Conclusion: The present study demonstrates that the new concept for 4D CBCT reconstruction, TCGM, combined with MAP iterative reconstruction framework enables time-ordered image reconstruction with narrower time-window.« less
  • Purpose: To improve CBCT image quality for image-guided radiotherapy by applying advanced reconstruction algorithms to overcome scatter, noise, and artifact limitations Methods: CBCT is used extensively for patient setup in radiotherapy. However, image quality generally falls short of diagnostic CT, limiting soft-tissue based positioning and potential applications such as adaptive radiotherapy. The conventional TrueBeam CBCT reconstructor uses a basic scatter correction and FDK reconstruction, resulting in residual scatter artifacts, suboptimal image noise characteristics, and other artifacts like cone-beam artifacts. We have developed an advanced scatter correction that uses a finite-element solver (AcurosCTS) to model the behavior of photons as theymore » pass (and scatter) through the object. Furthermore, iterative reconstruction is applied to the scatter-corrected projections, enforcing data consistency with statistical weighting and applying an edge-preserving image regularizer to reduce image noise. The combined algorithms have been implemented on a GPU. CBCT projections from clinically operating TrueBeam systems have been used to compare image quality between the conventional and improved reconstruction methods. Planning CT images of the same patients have also been compared. Results: The advanced scatter correction removes shading and inhomogeneity artifacts, reducing the scatter artifact from 99.5 HU to 13.7 HU in a typical pelvis case. Iterative reconstruction provides further benefit by reducing image noise and eliminating streak artifacts, thereby improving soft-tissue visualization. In a clinical head and pelvis CBCT, the noise was reduced by 43% and 48%, respectively, with no change in spatial resolution (assessed visually). Additional benefits include reduction of cone-beam artifacts and reduction of metal artifacts due to intrinsic downweighting of corrupted rays. Conclusion: The combination of an advanced scatter correction with iterative reconstruction substantially improves CBCT image quality. It is anticipated that clinically acceptable reconstruction times will result from a multi-GPU implementation (the algorithms are under active development and not yet commercially available). All authors are employees of and (may) own stock of Varian Medical Systems.« less
  • Purpose: Sparse-view computed tomography (CT) reconstruction is an effective strategy to reduce the radiation dose delivered to patients. Due to its insufficiency of measurements, traditional non-local means (NLM) based reconstruction methods often lead to over-smoothness in image edges. To address this problem, an adaptive NLM reconstruction method based on rotational invariance (RIANLM) is proposed. Methods: The method consists of four steps: 1) Initializing parameters; 2) Algebraic reconstruction technique (ART) reconstruction using raw projection data; 3) Positivity constraint of the image reconstructed by ART; 4) Update reconstructed image by using RIANLM filtering. In RIANLM, a novel similarity metric that is rotationalmore » invariance is proposed and used to calculate the distance between two patches. In this way, any patch with similar structure but different orientation to the reference patch would win a relatively large weight to avoid over-smoothed image. Moreover, the parameter h in RIANLM which controls the decay of the weights is adaptive to avoid over-smoothness, while it in NLM is not adaptive during the whole reconstruction process. The proposed method is named as ART-RIANLM and validated on Shepp-Logan phantom and clinical projection data. Results: In our experiments, the searching neighborhood size is set to 15 by 15 and the similarity window is set to 3 by 3. For the simulated case with a resolution of 256 by 256 Shepp-Logan phantom, the ART-RIANLM produces higher SNR (35.38dB<24.00dB) and lower MAE (0.0006<0.0023) reconstructed image than ART-NLM. The visual inspection demonstrated that the proposed method could suppress artifacts or noises more effectively and preserve image edges better. Similar results were found for clinical data case. Conclusion: A novel ART-RIANLM method for sparse-view CT reconstruction is presented with superior image. Compared to the conventional ART-NLM method, the SNR and MAE from ART-RIANLM increases 47% and decreases 74%, respectively.« less
  • Purpose: To generalize and experimentally validate a novel algorithm for reconstructing the 3D pose (position and orientation) of implanted brachytherapy seeds from a set of a few measured 2D cone-beam CT (CBCT) x-ray projections. Methods: The iterative forward projection matching (IFPM) algorithm was generalized to reconstruct the 3D pose, as well as the centroid, of brachytherapy seeds from three to ten measured 2D projections. The gIFPM algorithm finds the set of seed poses that minimizes the sum-of-squared-difference of the pixel-by-pixel intensities between computed and measured autosegmented radiographic projections of the implant. Numerical simulations of clinically realistic brachytherapy seed configurations weremore » performed to demonstrate the proof of principle. An in-house machined brachytherapy phantom, which supports precise specification of seed position and orientation at known values for simulated implant geometries, was used to experimentally validate this algorithm. The phantom was scanned on an ACUITY CBCT digital simulator over a full 660 sinogram projections. Three to ten x-ray images were selected from the full set of CBCT sinogram projections and postprocessed to create binary seed-only images. Results: In the numerical simulations, seed reconstruction position and orientation errors were approximately 0.6 mm and 5 deg., respectively. The physical phantom measurements demonstrated an absolute positional accuracy of (0.78{+-}0.57) mm or less. The {theta} and {phi} angle errors were found to be (5.7{+-}4.9) deg. and (6.0{+-}4.1) deg., respectively, or less when using three projections; with six projections, results were slightly better. The mean registration error was better than 1 mm/6 deg. compared to the measured seed projections. Each test trial converged in 10-20 iterations with computation time of 12-18 min/iteration on a 1 GHz processor. Conclusions: This work describes a novel, accurate, and completely automatic method for reconstructing seed orientations, as well as centroids, from a small number of radiographic projections, in support of intraoperative planning and adaptive replanning. Unlike standard back-projection methods, gIFPM avoids the need to match corresponding seed images on the projections. This algorithm also successfully reconstructs overlapping clustered and highly migrated seeds in the implant. The accuracy of better than 1 mm and 6 deg. demonstrates that gIFPM has the potential to support 2D Task Group 43 calculations in clinical practice.« less