skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: WE-AB-202-09: Feasibility and Quantitative Analysis of 4DCT-Based High Precision Lung Elastography

Abstract

Purpose: The purpose of this project is to derive high precision elastography measurements from 4DCT lung scans to facilitate the implementation of elastography in a radiotherapy context. Methods: 4DCT scans of the lungs were acquired, and breathing stages were subsequently registered to each other using an optical flow DIR algorithm. The displacement of each voxel gleaned from the registration was taken to be the ground-truth deformation. These vectors, along with the 4DCT source datasets, were used to generate a GPU-based biomechanical simulation that acted as a forward model to solve the inverse elasticity problem. The lung surface displacements were applied as boundary constraints for the model-guided lung tissue elastography, while the inner voxels were allowed to deform according to the linear elastic forces within the model. A biomechanically-based anisotropic convergence magnification technique was applied to the inner voxels in order to amplify the subtleties of the interior deformation. Solving the inverse elasticity problem was accomplished by modifying the tissue elasticity and iteratively deforming the biomechanical model. Convergence occurred when each voxel was within 0.5 mm of the ground-truth deformation and 1 kPa of the ground-truth elasticity distribution. To analyze the feasibility of the model-guided approach, we present the results formore » regions of low ventilation, specifically, the apex. Results: The maximum apical boundary expansion was observed to be between 2 and 6 mm. Simulating this expansion within an apical lung model, it was observed that 100% of voxels converged within 0.5 mm of ground-truth deformation, while 91.8% converged within 1 kPa of the ground-truth elasticity distribution. A mean elasticity error of 0.6 kPa illustrates the high precision of our technique. Conclusion: By utilizing 4DCT lung data coupled with a biomechanical model, high precision lung elastography can be accurately performed, even in low ventilation regions of the lungs. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144087.« less

Authors:
; ; ;  [1]
  1. UCLA, Los Angeles, CA (United States)
Publication Date:
OSTI Identifier:
22654111
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ACCURACY; COMPUTERIZED TOMOGRAPHY; DEFORMATION; ELASTICITY; GROUND TRUTH MEASUREMENTS; IMAGE PROCESSING; LUNGS; SIMULATION

Citation Formats

Hasse, K, Neylon, J, Low, D, and Santhanam, A. WE-AB-202-09: Feasibility and Quantitative Analysis of 4DCT-Based High Precision Lung Elastography. United States: N. p., 2016. Web. doi:10.1118/1.4957750.
Hasse, K, Neylon, J, Low, D, & Santhanam, A. WE-AB-202-09: Feasibility and Quantitative Analysis of 4DCT-Based High Precision Lung Elastography. United States. doi:10.1118/1.4957750.
Hasse, K, Neylon, J, Low, D, and Santhanam, A. 2016. "WE-AB-202-09: Feasibility and Quantitative Analysis of 4DCT-Based High Precision Lung Elastography". United States. doi:10.1118/1.4957750.
@article{osti_22654111,
title = {WE-AB-202-09: Feasibility and Quantitative Analysis of 4DCT-Based High Precision Lung Elastography},
author = {Hasse, K and Neylon, J and Low, D and Santhanam, A},
abstractNote = {Purpose: The purpose of this project is to derive high precision elastography measurements from 4DCT lung scans to facilitate the implementation of elastography in a radiotherapy context. Methods: 4DCT scans of the lungs were acquired, and breathing stages were subsequently registered to each other using an optical flow DIR algorithm. The displacement of each voxel gleaned from the registration was taken to be the ground-truth deformation. These vectors, along with the 4DCT source datasets, were used to generate a GPU-based biomechanical simulation that acted as a forward model to solve the inverse elasticity problem. The lung surface displacements were applied as boundary constraints for the model-guided lung tissue elastography, while the inner voxels were allowed to deform according to the linear elastic forces within the model. A biomechanically-based anisotropic convergence magnification technique was applied to the inner voxels in order to amplify the subtleties of the interior deformation. Solving the inverse elasticity problem was accomplished by modifying the tissue elasticity and iteratively deforming the biomechanical model. Convergence occurred when each voxel was within 0.5 mm of the ground-truth deformation and 1 kPa of the ground-truth elasticity distribution. To analyze the feasibility of the model-guided approach, we present the results for regions of low ventilation, specifically, the apex. Results: The maximum apical boundary expansion was observed to be between 2 and 6 mm. Simulating this expansion within an apical lung model, it was observed that 100% of voxels converged within 0.5 mm of ground-truth deformation, while 91.8% converged within 1 kPa of the ground-truth elasticity distribution. A mean elasticity error of 0.6 kPa illustrates the high precision of our technique. Conclusion: By utilizing 4DCT lung data coupled with a biomechanical model, high precision lung elastography can be accurately performed, even in low ventilation regions of the lungs. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1144087.},
doi = {10.1118/1.4957750},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: Thoracic motion changes from cycle-to-cycle and day-to-day. Conventional 4DCT does not capture these cycle to cycle variations. We present initial results of a novel 4DCT reconstruction technique based on maximum a posteriori (MAP) reconstruction. The technique uses the same acquisition process (and therefore dose) as a conventional 4DCT in order to create a high spatiotemporal resolution cine CT that captures several breathing cycles. Methods: Raw 4DCT data were acquired from a lung cancer patient. The continuous 4DCT was reconstructed using MAP algorithm which uses the raw, time-stamped CT data to reconstruct images while simultaneously estimating deformation in the subject'smore » anatomy. This framework incorporates physical effects such as hysteresis and is robust to detector noise and irregular breathing patterns. The 4D image is described in terms of a 3D reference image defined at one end of the hysteresis loop, and two deformation vector fields (DVFs) corresponding to inhale motion and exhale motion respectively. The MAP method uses all of the CT projection data and maximizes the log posterior in order to iteratively estimate a timevariant deformation vector field that describes the entire moving and deforming volume. Results: The MAP 4DCT yielded CT-quality images for multiple cycles corresponding to the entire duration of CT acquisition, unlike the conventional 4DCT, which only yielded a single cycle. Variations such as amplitude and frequency changes and baseline shifts were clearly captured by the MAP 4DC Conclusion: We have developed a novel, binning-free, parameterized 4DCT reconstruction technique that can capture cycle-to-cycle variations of respiratory motion. This technique provides an invaluable tool for respiratory motion management research. This work was supported by funding from the National Institutes of Health and VisionRT Ltd. Amit Sawant receives research funding from Varian Medical Systems, Vision RT and Elekta.« less
  • Purpose: To study breathing related tumor motion amplitudes by lung lobe location under controlled breathing conditions used in Stereotactic Body Radiation Therapy (SBRT) for NSCLC. Methods: Sixty-five NSCLC SBRT patients since 2009 were investigated. Patients were categorized based on tumor anatomic location (RUL-17, RML-7, RLL-18, LUL-14, LLL-9). A 16-slice CT scanner [GE RT16 Pro] along with Varian Realtime Position Management (RPM) software was used to acquire the 4DCT data set using 1.25 mm slice width. Images were binned in 10 phases, T00 being at maximum inspiration ' T50 at maximum expiration phase. Tumor volume was segmented in T50 using themore » CT-lung window and its displacement were measured from phase to phase in all three axes; superiorinferior, anterior-posterior ' medial-lateral at the centroid level of the tumor. Results: The median tumor movement in each lobe was as follows: RUL= 3.8±2.0 mm (mean ITV: 9.5 cm{sup 3}), RML= 4.7±2.8 mm (mean ITV: 9.2 cm{sup 3}), RLL=6.6±2.6 mm (mean ITV: 12.3 cm{sup 3}), LUL=3.8±2.4 mm (mean ITV: 18.5 cm{sup 3}), ' LLL=4.7±2.5 mm (mean ITV: 11.9 cm{sup 3}). The median respiratory cycle for all patients was found to be 3.81 ± 1.08 seconds [minimum 2.50 seconds, maximum 7.07 seconds]. The tumor mobility incorporating breathing cycle was RUL = 0.95±0.49 mm/s, RML = 1.35±0.62 mm/s, RLL = 1.83±0.71 mm/s, LUL = 0.98 ±0.50 mm/s, and LLL = 1.15 ±0.53 mm/s. Conclusion: Our results show that tumor displacement is location dependent. The range of motion and mobility increases as the location of the tumor nears the diaphragm. Under abdominal compression, the magnitude of tumor motion is reduced by as much as a factor of 2 in comparison to reported tumor magnitudes under conventional free breathing conditions. This study demonstrates the utility of abdominal compression in reducing the tumor motion leading to reduced ITV and planning tumor volumes (PTV)« less
  • Purpose: To investigate radiotherapy outcomes by incorporating 4DCT-based physiological and tumor elasticity functions for lung cancer patients. Methods: 4DCT images were acquired from 28 lung SBRT patients before radiation treatment. Deformable image registration (DIR) was performed from the end-inhale to the end-exhale using a B-Spline-based algorithm (Elastix, an open source software package). The resultant displacement vector fields (DVFs) were used to calculate a relative Jacobian function (RV) for each patient. The computed functions in the lung and tumor regions represent lung ventilation and tumor elasticity properties, respectively. The 28 patients were divided into two groups: 16 with two-year tumor localmore » control (LC) and 12 with local failure (LF). The ventilation and elasticity related RV functions were calculated for each of these patients. Results: The LF patients have larger RV values than the LC patients. The mean RV value in the lung region was 1.15 (±0.67) for the LF patients, higher than 1.06 (±0.59) for the LC patients. In the tumor region, the elasticity-related RV values are 1.2 (±0.97) and 0.86 (±0.64) for the LF and LC patients, respectively. Among the 16 LC patients, 3 have the mean RV values greater than 1.0 in the tumors. These tumors were located near the diaphragm, where the displacements are relatively large.. RV functions calculated in the tumor were better correlated with treatment outcomes than those calculated in the lung. Conclusion: The ventilation and elasticity-related RV functions in the lung and tumor regions were calculated from 4DCT image and the resultant values showed differences between the LC and LF patients. Further investigation of the impact of the displacements on the computed RV is warranted. Results suggest that the RV images might be useful for evaluation of treatment outcome for lung cancer patients.« less
  • To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for bothmore » models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry. - Highlights: • We developed a breathing human lung CFD model based on 4D-dynamic CT images. • The 4DCT-based breathing lung model is able to capture lung relative hysteresis. • A new boundary condition for lung model based on one static CT image was proposed. • The difference between lung models based on 4D and static CT images was quantified.« less
  • Purpose: High local control rates have been reported with stereotactic radiotherapy (SRT) for Stage I non-small-cell lung cancer. Because high-dose fractions are used, reduction in treatment portals will reduce the risk of toxicity to adjacent structures. Respiratory gating can allow reduced field sizes and planning four-dimensional computed tomography scans were retrospectively analyzed to study the benefits for gated SRT and identify patients who derive significant benefit from this approach. Methods and Materials: A total of 31 consecutive patients underwent a four-dimensional computed tomography scan, in which three-dimensional computed tomography datasets for 10 phase bins of the respiratory cycle were acquiredmore » during free breathing. For a total of 34 tumors, the three planning target volumes (PTVs) were analyzed, namely (1) PTV{sub 10bins}, derived from an internal target volume (ITV) that incorporated all observed mobility (ITV{sub 10bins}), with the addition of a 3-mm isotropic setup margin; (2) PTV{sub gating}, derived from an ITV generated from mobility observed in three consecutive phases ('bins') during tidal-expiration, plus addition of a 3-mm isotropic margin; and (3) PTV{sub 10mm}, derived from the addition of a 10-mm isotropic margin to the most central gross tumor volumes in the three bins selected for gating. Results: The PTV{sub 10bins} and PTV{sub gating} were, on average, 48.2% and 33.3% of the PTV{sub 10mm}, and respective mean volumes of normal tissue (outside the PTV) receiving the prescribed doses were 57.1% and 39.1%, respectively, of that of PTV{sub 10mm}. A significant correlation was seen between the extent of tumor mobility (i.e., a three-dimensional mobility vector of at least 1 cm) and reduction in normal tissue irradiation achieved with gating. The ratio of the intersecting and the encompassing volumes of GTVs at extreme phases of tidal respiration predicted for the benefits of gated respiration. Conclusion: The use of 'standard population-based' margins for SRT leads to unnecessary normal tissue irradiation. The risk of toxicity is further reduced if respiration-gated radiotherapy is used to treat mobile tumors. These findings suggest that gated SRT will be of clinical relevance in selected patients with mobile tumors.« less