skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: WE-AB-202-01: Evaluating the Toxicity Reduction with CT-Ventilation Functional Avoidance Radiation Therapy

Abstract

Purpose: CT-ventilation is an exciting new imaging modality that uses 4DCTs to calculate lung ventilation. Studies have proposed to use 4DCT-ventilation imaging for functional avoidance radiotherapy which implies designing treatment plans to spare functional portions of the lung. Although retrospective studies have been performed to evaluate the dosimetric gains to functional lung; no work has been done to translate the dosimetric gains to an improvement in pulmonary toxicity. The purpose of our work was to evaluate the potential reduction in toxicity for 4DCT-ventilation based functional avoidance. Methods: 70 lung cancer patients with 4DCT imaging were used for the study. CT-ventilation maps were calculated using the patient’s 4DCT, deformable image registrations, and a density-change-based algorithm. Radiation pneumonitis was graded using imaging and clinical information. Log-likelihood methods were used to fit a normal-tissue-complication-probability (NTCP) model predicting grade 2+ radiation pneumonitis as a function of doses (mean and V20) to functional lung (>15% ventilation). For 20 patients a functional plan was generated that reduced dose to functional lung while meeting RTOG 0617-based constraints. The NTCP model was applied to the functional plan to determine the reduction in toxicity with functional planning Results: The mean dose to functional lung was 16.8 and 17.7 Gymore » with the functional and clinical plans respectively. The corresponding grade 2+ pneumonitis probability was 26.9% with the clinically-used plan and 24.6% with the functional plan (8.5% reduction). The V20-based grade 2+ pneumonitis probability was 23.7% with the clinically-used plan and reduced to 19.6% with the functional plan (20.9% reduction). Conclusion: Our results revealed a reduction of 9–20% in complication probability with functional planning. To our knowledge this is the first study to apply complication probability to convert dosimetric results to toxicity improvement. The results presented in the current work provide seminal data for prospective clinical trials in functional avoidance. YV discloses funding from State of Colorado. TY discloses National Lung Cancer Partnership; Young Investigator Research grant.« less

Authors:
 [1]; ;  [2];  [3]; ;  [4];  [5]
  1. University of Colorado Denver, Aurora, CO (United States)
  2. Tohoku University Graduate School of Medicine, Sendal, Miyagi (Japan)
  3. University Texas Medical Branch of Galveston, League City, TX (United States)
  4. Beaumont Health System, Royal Oak, MI (United States)
  5. UC Davis School of Medicine, Sacramento, CA (United States)
Publication Date:
OSTI Identifier:
22654103
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BIOMEDICAL RADIOGRAPHY; CLINICAL TRIALS; IMAGES; LUNGS; PATIENTS; PLANNING; PNEUMONITIS; RADIATION DOSES; RADIOTHERAPY; TOXICITY

Citation Formats

Vinogradskiy, Y, Miyasaka, Y, Kadoya, N, Castillo, R, Castillo, E, Guerrero, T, and Yamamoto, T. WE-AB-202-01: Evaluating the Toxicity Reduction with CT-Ventilation Functional Avoidance Radiation Therapy. United States: N. p., 2016. Web. doi:10.1118/1.4957742.
Vinogradskiy, Y, Miyasaka, Y, Kadoya, N, Castillo, R, Castillo, E, Guerrero, T, & Yamamoto, T. WE-AB-202-01: Evaluating the Toxicity Reduction with CT-Ventilation Functional Avoidance Radiation Therapy. United States. doi:10.1118/1.4957742.
Vinogradskiy, Y, Miyasaka, Y, Kadoya, N, Castillo, R, Castillo, E, Guerrero, T, and Yamamoto, T. 2016. "WE-AB-202-01: Evaluating the Toxicity Reduction with CT-Ventilation Functional Avoidance Radiation Therapy". United States. doi:10.1118/1.4957742.
@article{osti_22654103,
title = {WE-AB-202-01: Evaluating the Toxicity Reduction with CT-Ventilation Functional Avoidance Radiation Therapy},
author = {Vinogradskiy, Y and Miyasaka, Y and Kadoya, N and Castillo, R and Castillo, E and Guerrero, T and Yamamoto, T},
abstractNote = {Purpose: CT-ventilation is an exciting new imaging modality that uses 4DCTs to calculate lung ventilation. Studies have proposed to use 4DCT-ventilation imaging for functional avoidance radiotherapy which implies designing treatment plans to spare functional portions of the lung. Although retrospective studies have been performed to evaluate the dosimetric gains to functional lung; no work has been done to translate the dosimetric gains to an improvement in pulmonary toxicity. The purpose of our work was to evaluate the potential reduction in toxicity for 4DCT-ventilation based functional avoidance. Methods: 70 lung cancer patients with 4DCT imaging were used for the study. CT-ventilation maps were calculated using the patient’s 4DCT, deformable image registrations, and a density-change-based algorithm. Radiation pneumonitis was graded using imaging and clinical information. Log-likelihood methods were used to fit a normal-tissue-complication-probability (NTCP) model predicting grade 2+ radiation pneumonitis as a function of doses (mean and V20) to functional lung (>15% ventilation). For 20 patients a functional plan was generated that reduced dose to functional lung while meeting RTOG 0617-based constraints. The NTCP model was applied to the functional plan to determine the reduction in toxicity with functional planning Results: The mean dose to functional lung was 16.8 and 17.7 Gy with the functional and clinical plans respectively. The corresponding grade 2+ pneumonitis probability was 26.9% with the clinically-used plan and 24.6% with the functional plan (8.5% reduction). The V20-based grade 2+ pneumonitis probability was 23.7% with the clinically-used plan and reduced to 19.6% with the functional plan (20.9% reduction). Conclusion: Our results revealed a reduction of 9–20% in complication probability with functional planning. To our knowledge this is the first study to apply complication probability to convert dosimetric results to toxicity improvement. The results presented in the current work provide seminal data for prospective clinical trials in functional avoidance. YV discloses funding from State of Colorado. TY discloses National Lung Cancer Partnership; Young Investigator Research grant.},
doi = {10.1118/1.4957742},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: To investigate the ability of four-dimensional computed tomography (4D-CT)-derived ventilation images to identify regions of highly functional lung for avoidance in intensity-modulated radiotherapy (IMRT) planning in locally advanced non-small-cell lung cancer (NSCLC). Methods and Materials: The treatment-planning records from 21 patients with Stage III NSCLC were selected. Ventilation images were generated from the 4D-CT sets, and each was imported into the treatment-planning system. Ninetieth percentile functional volumes (PFV90), constituting the 10% of the lung volume where the highest ventilation occurs, were generated. Baseline IMRT plans were generated using the lung volume constraint on V20 (<35%), and two additional plansmore » were generated using constraints on the PFV90 without a volume constraint. Dose-volume and dose-function histograms (DVH, DFH) were generated and used to evaluate the planning target volume coverage, lung volume, and functional parameters for comparison of the plans. Results: The mean dose to the PFV90 was reduced by 2.9 Gy, and the DFH at 5 Gy (F5) was reduced by 9.6% (SE = 2.03%). The F5, F10, V5, and V10 were all significantly reduced from the baseline values. We identified a favorable subset of patients for whom there was a further significant improvement in the mean lung dose. Conclusions: Four-dimensional computed tomography-derived ventilation regions were successfully used as avoidance structures to reduce the DVH and DFH at 5 Gy in all cases. In a subset, there was also a reduction in the F10 and V10 without a change in the V20, suggesting that this technique could be safely used.« less
  • Purpose: Radiotherapy for hepatocellular carcinoma patients is conventionally planned without consideration of spatial heterogeneity in hepatic function, which may increase risk of radiation-induced liver disease. Pencil beam scanning (PBS) proton radiotherapy (pRT) plans were generated to differentially decrease dose to functional liver volumes (FLV) defined on [{sup 99m}Tc]sulfur colloid (SC) SPECT/CT images (functional avoidance plans) and compared against conventional pRT plans. Methods: Three HCC patients underwent SC SPECT/CT scans for pRT planning acquired 15 min post injection over 24 min. Images were reconstructed with OSEM following scatter, collimator, and exhale CT attenuation correction. Functional liver volumes (FLV) were defined bymore » liver:spleen uptake ratio thresholds (43% to 90% maximum). Planning objectives to FLV were based on mean SC SPECT uptake ratio relative to GTV-subtracted liver and inversely scaled to mean liver dose of 20 Gy. PTV target coverage (V{sub 95}) was matched between conventional and functional avoidance plans. PBS pRT plans were optimized in RayStation for single field uniform dose (SFUD) and systematically perturbed to verify robustness to uncertainty in range, setup, and motion. Relative differences in FLV DVH and target dose heterogeneity (D{sub 2}-D{sub 98})/D50 were assessed. Results: For similar liver dose between functional avoidance and conventional PBS pRT plans (D{sub mean}≤5% difference, V{sub 18Gy}≤1% difference), dose to functional liver volumes were lower in avoidance plans but varied in magnitude across patients (FLV{sub 70%max} D{sub mean}≤26% difference, V{sub 18Gy}≤8% difference). Higher PTV dose heterogeneity in avoidance plans was associated with lower functional liver dose, particularly for the largest lesion [(D{sub 2}-D{sub 98})/D{sub 50}=13%, FLV{sub 90%max}=50% difference]. Conclusion: Differential avoidance of functional liver regions defined on sulfur colloid SPECT/CT is feasible with proton therapy. The magnitude of benefit appears to be patient specific and dependent on tumor location, size, and proximity to functional volumes. Further investigation in a larger cohort of patients may validate the clinical utility of functional avoidance planning of HCC radiotherapy.« less
  • Purpose: The development of clinical trials is underway to use 4-dimensional computed tomography (4DCT) ventilation imaging to preferentially spare functional lung in patients undergoing radiation therapy. The purpose of this work was to generate data to aide with clinical trial design by retrospectively characterizing dosimetric and functional profiles for patients with different stages of lung cancer. Methods and Materials: A total of 118 lung cancer patients (36% stage I and 64% stage III) from 2 institutions were used for the study. A 4DCT-ventilation map was calculated using the patient's 4DCT imaging, deformable image registration, and a density-change–based algorithm. To assessmore » each patient's spatial ventilation profile both quantitative and qualitative metrics were developed, including an observer-based defect observation and metrics based on the ventilation in each lung third. For each patient we used the clinical doses to calculate functionally weighted mean lung doses and metrics that assessed the interplay between the spatial location of the dose and high-functioning lung. Results: Both qualitative and quantitative metrics revealed a significant difference in functional profiles between the 2 stage groups (P<.01). We determined that 65% of stage III and 28% of stage I patients had ventilation defects. Average functionally weighted mean lung dose was 19.6 Gy and 5.4 Gy for stage III and I patients, respectively, with both groups containing patients with large spatial overlap between dose and high-function regions. Conclusion: Our 118-patient retrospective study found that 65% of stage III patients have regionally variant ventilation profiles that are suitable for functional avoidance. Our results suggest that regardless of disease stage, it is possible to have unique spatial interplay between dose and high-functional lung, highlighting the importance of evaluating the function of each patient and developing a personalized functional avoidance treatment approach.« less
  • Purpose: To evaluate the functional planning using CT-pulmonary ventilation imaging for conformal SBRT. Methods: The CT-pulmonary ventilation image was generated using the Jacobian metric in the in-house program with the NiftyReg software package. Using the ventilation image, the normal lung was split into three lung regions for functionality (high, moderate and low). The anatomical plan (AP) and functional plan (FP) were made for ten lung SBRT patients. For the AP, the beam angles were optimized with the dose-volume constraints for the normal lung sparing and the PTV coverage. For the FP, the gantry angles were also optimized with the additionalmore » constraint for high functional lung. The MLC aperture shapes were adjusted to the PTV with the additional 5 mm margin. The dosimetric parameters for PTV, the functional volumes, spinal cord and so on were compared in both plans. Results: Compared to the AP, the FP showed better dose sparing for high- and moderate-functional lungs with similar PTV coverage while not taking care of the low functional lung (High:−12.9±9.26% Moderate: −2.0±7.09%, Low: +4.1±12.2%). For the other normal organs, the FP and AP showed similar dose sparing in the eight patients. However, the FP showed that the maximum doses for spinal cord were increased with the significant increment of 16.4Gy and 21.0Gy in other two patients, respectively. Because the beam direction optimizer chose the unexpected directions passing through the spinal cord. Conclusion: Even the functional conformal SBRT can selectively reduce high- and moderatefunctional lung while keeping the PTV coverage. However, it would be careful that the optimizer would choose unexpected beam angles and the dose sparing for the other normal organs can be worse. Therefore, the planner needs to control the dose-volume constraints and also limit the beam angles in order to achieve the expected dose sparing and coverage.« less
  • Purpose: Deodorant use during radiation therapy for breast cancer has been controversial as there are concerns deodorant use may exacerbate axillary skin toxicity. The present study prospectively determined the use of both aluminum-containing and non aluminum containing deodorants on axillary skin toxicity during conventionally fractionated postoperative radiation therapy for breast cancer. Methods and Materials: This 3-arm randomized controlled study was conducted at a single center, tertiary cancer hospital between March 2011 and April 2013. Participants were randomized to 1 of 2 experimental groups (aluminum-containing deodorant and soap or non–aluminum containing deodorant and soap) or a control group (soap). A totalmore » of 333 participants were randomized. Generalized estimating equations were used to estimate and compare the odds of experiencing high levels of sweating and skin toxicity in each of the deodorant groups to the odds in the control group. The study evaluated a range of endpoints including objective measurements of axilla sweating, skin toxicity, pain, itch and burning. Quality of life was assessed with a validated questionnaire. Results: Radiation characteristics were similar across all groups. Patients in the deodorant groups did not report significantly different ratings for axillary pain, itch, or burning compared with the control group. Patients in the aluminum-containing deodorant group experienced significantly less sweating than the control; the odds of their sweating being barely tolerable and frequently or always interfering with their daily activities was decreased by 85% (odds ratio, 0.15; 95% confidence interval, 0.03-0.91). Conclusions: We found no evidence that the use of either aluminum-containing or non–aluminum containing deodorant adversely effects axillary skin reaction during conventionally fractionated radiation therapy for breast cancer. Our analysis also suggests patients in the aluminum-containing deodorant arm had significantly less sweating without increased symptoms of axillary radiation skin toxicity. These results add to the evidence that the prescription of deodorants during radiation therapy for breast cancer is now questionable.« less