skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: WE-AB-BRB-02: Methods and Applications of 3D Radiochromic Dosimetry

Abstract

Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability of water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, whichmore » can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on. Learning Objectives: To understand the physics of a variety of dosimetry techniques based upon optical imaging To investigate the strategies to overcome respective challenges and limitations To explore novel ideas of dosimeter design Supported in part by NIH Grants R01CA148853, R01CA182450, R01CA109558. Brian Pogue is founder and president of the company DoseOptics LLC, dedicated to developing and commercializing the first dedicated Cerenkov imaging camera and system for radiation dose imaging. Work reported in this talk does not involve the use of DoseOptics technology.; H. Li, this work was supported in part by NIH Grant No. R01CA148853; S. Beddar, NIH funding R01-CA182450.« less

Authors:
 [1]
  1. Duke University Medical Center (United States)
Publication Date:
OSTI Identifier:
22654091
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BIOMEDICAL RADIOGRAPHY; DOSEMETERS; DOSIMETRY; PROTON BEAMS; QUALITY ASSURANCE; RADIATION DOSE DISTRIBUTIONS; RADIOTHERAPY; VISIBLE RADIATION; X RADIATION

Citation Formats

Oldham, M. WE-AB-BRB-02: Methods and Applications of 3D Radiochromic Dosimetry. United States: N. p., 2016. Web. doi:10.1118/1.4957727.
Oldham, M. WE-AB-BRB-02: Methods and Applications of 3D Radiochromic Dosimetry. United States. doi:10.1118/1.4957727.
Oldham, M. 2016. "WE-AB-BRB-02: Methods and Applications of 3D Radiochromic Dosimetry". United States. doi:10.1118/1.4957727.
@article{osti_22654091,
title = {WE-AB-BRB-02: Methods and Applications of 3D Radiochromic Dosimetry},
author = {Oldham, M.},
abstractNote = {Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability of water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, which can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on. Learning Objectives: To understand the physics of a variety of dosimetry techniques based upon optical imaging To investigate the strategies to overcome respective challenges and limitations To explore novel ideas of dosimeter design Supported in part by NIH Grants R01CA148853, R01CA182450, R01CA109558. Brian Pogue is founder and president of the company DoseOptics LLC, dedicated to developing and commercializing the first dedicated Cerenkov imaging camera and system for radiation dose imaging. Work reported in this talk does not involve the use of DoseOptics technology.; H. Li, this work was supported in part by NIH Grant No. R01CA148853; S. Beddar, NIH funding R01-CA182450.},
doi = {10.1118/1.4957727},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Radiochromic film can be a fast and inexpensive means for performing accurate quantitative radiation dosimetry. The development of new radiochromic compositions that have greater dose sensitivity and fewer environmental dependencies has led to an ever increasing use of the film in radiotherapy applications. In this report the various physical and dosimetric properties of radiochromic film are presented and the strategies to adequately manage these properties when using radiochromic film for radiotherapy applications are discussed.
  • Purpose: This work verified simulations of beta-minus emitter Praseodymium-142 (Pr-142) for microsphere brachytherapy by performing absolute dose measurements for Pr 142 microspheres in a microcapillary as a simplified model for a single blood vessel for the treatment of Hepatocellular Carcinoma (HCC). Methods: Pr-142 microspheres (mass: 0.169g, average diameter: 29.7±3.9μm) were activated by thermal neutron activation at the University of Missouri Research Reactor. Experimental setup consisted of a microsphere solution (initial activity 36.6mCi in 0.1ml of sterile water) within a glass microcapillary (internal and external diameter: 305μm and 453μm, respectively) placed for 51h in a custom made Gammex Solid Water™ phantom.more » GAFCHROMIC™ EBT2 film calibrated with a 6MeV electron beam was used to access the dose fall-off of microspheres. The microcapillary was modeled in MCNPX2.6 in order to compare with experiments. Results: The radial dose fall-off on the transverse plane due to scatter and attenuation in the solid water phantom was analyzed using ImageJ for both film and MCNPX2.6 simulations. Isodose analysis showed close agreement among the methods used, i.e. measurements and simulations agree within 3.9% for doses below 1600cGy. Experimental and simulated doses obtained at 0.5 cm radially from the source were 1547cGy and 1610cGy respectively. Discrepancies for points close to the microcapillary surface were observed between MCNPX2.6 and measurements due to film saturation for high doses. Dose due to Pr-142 3.7% gamma emission was below the threshold of detection for the film. Conclusion: A detailed dosimetric study was performed for Pr-142 glass microspheres within a single microcapillary. MCNPX2.6 simulations were verified by means of direct measurement. Based on these results, Pr-142 appears to be a viable choice of radionuclide for treating HCC.« less
  • No abstract prepared.
  • The accuracy and utility of the dosimetry system used for radiation effects research with high energy protons at the Indiana University Cyclotron Facility, IUCF, has been confirmed by comparison with an independently calibrated Markus ion chamber, a Schulz water calorimeter and GAFCHROMIC{trademark} films.