skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: WE-AB-BRB-00: Session in Memory of Robert J. Shalek: High Resolution Dosimetry from 2D to 3D to Real-Time 3D

Abstract

Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability of water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, whichmore » can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on. Learning Objectives: To understand the physics of a variety of dosimetry techniques based upon optical imaging To investigate the strategies to overcome respective challenges and limitations To explore novel ideas of dosimeter design Supported in part by NIH Grants R01CA148853, R01CA182450, R01CA109558. Brian Pogue is founder and president of the company DoseOptics LLC, dedicated to developing and commercializing the first dedicated Cerenkov imaging camera and system for radiation dose imaging. Work reported in this talk does not involve the use of DoseOptics technology.; H. Li, this work was supported in part by NIH Grant No. R01CA148853; S. Beddar, NIH funding R01-CA182450.« less

Publication Date:
OSTI Identifier:
22654089
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BIOMEDICAL RADIOGRAPHY; DOSEMETERS; DOSIMETRY; OPTICS; PROTON BEAMS; QUALITY ASSURANCE; RADIATION DOSE DISTRIBUTIONS; RADIOTHERAPY; VISIBLE RADIATION; X RADIATION

Citation Formats

NONE. WE-AB-BRB-00: Session in Memory of Robert J. Shalek: High Resolution Dosimetry from 2D to 3D to Real-Time 3D. United States: N. p., 2016. Web. doi:10.1118/1.4957725.
NONE. WE-AB-BRB-00: Session in Memory of Robert J. Shalek: High Resolution Dosimetry from 2D to 3D to Real-Time 3D. United States. doi:10.1118/1.4957725.
NONE. Wed . "WE-AB-BRB-00: Session in Memory of Robert J. Shalek: High Resolution Dosimetry from 2D to 3D to Real-Time 3D". United States. doi:10.1118/1.4957725.
@article{osti_22654089,
title = {WE-AB-BRB-00: Session in Memory of Robert J. Shalek: High Resolution Dosimetry from 2D to 3D to Real-Time 3D},
author = {NONE},
abstractNote = {Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability of water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, which can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on. Learning Objectives: To understand the physics of a variety of dosimetry techniques based upon optical imaging To investigate the strategies to overcome respective challenges and limitations To explore novel ideas of dosimeter design Supported in part by NIH Grants R01CA148853, R01CA182450, R01CA109558. Brian Pogue is founder and president of the company DoseOptics LLC, dedicated to developing and commercializing the first dedicated Cerenkov imaging camera and system for radiation dose imaging. Work reported in this talk does not involve the use of DoseOptics technology.; H. Li, this work was supported in part by NIH Grant No. R01CA148853; S. Beddar, NIH funding R01-CA182450.},
doi = {10.1118/1.4957725},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: To investigate a miniature optical dosimeter for real-time, high-resolution dosimetry, and explore its potential applications for in vivo measurements and small field dosimetry. Methods: A micro-sized hemispherical (400 µm radius) scintillating detector was constructed from lanthanide activated phosphors doped with Europium (GOS:Eu) and encapsulated in a 17 gauge plastic catheter. A photon counting PMT and CCD-chip spectrometer were used to detect signals emitted from the detector. A single band-passing spectral approach (630nm) was implemented to discriminate the micro-phosphor optical signal from background signals (Cerenkov radiation) in the optical fiber. To test real-time monitoring capabilities, a 3D-printed phantom was usedmore » to detect an 192Ir HDR brachytherapy source at locations ranging from 1 to 4 cm radially and 12 cm along the travel axis of the HDR wire. To test the application of the micro-sized detector for small field dosimetry, the linearity of detector was characterized through irradiation of 6MV photon beam at dose-rates ranging from 100 to 600 MU, and the effect of field size was characterized through detections of beams ranging from 30×30 to 1×1 cm2 size. Results: With a 1 second integration time for the spectrometer, the recorded measurements indicated that the micro-sized detector allowed accurate detection of source position at distances of up to 6 cm along the axis of travel in water. EB measurements showed that the detected signal was linearly correlated with dose rate (R{sup 2} = 0.99). The crossbeam profile was determined with a step size of ∼500 µm. Conclusion: Miniaturization of optical dosimeters is shown to be possible through the construction of lanthanide activated doped phosphors detectors. The small size of the detector makes it amenable to a variety of applications, including real-time dose delivery verification during HDR brachytherapy and EB beam calibrations in small fields.« less
  • Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability ofmore » water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, which can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on. Learning Objectives: To understand the physics of a variety of dosimetry techniques based upon optical imaging To investigate the strategies to overcome respective challenges and limitations To explore novel ideas of dosimeter design Supported in part by NIH Grants R01CA148853, R01CA182450, R01CA109558. Brian Pogue is founder and president of the company DoseOptics LLC, dedicated to developing and commercializing the first dedicated Cerenkov imaging camera and system for radiation dose imaging. Work reported in this talk does not involve the use of DoseOptics technology.; H. Li, this work was supported in part by NIH Grant No. R01CA148853; S. Beddar, NIH funding R01-CA182450.« less
  • Purpose: KCl:Eu2+ storage phosphor shows promise for radiation therapy dosimetry. The purpose of this work is to investigate several important aspects of this material for potential commercial use. Methods: KCl:Eu2+ chips were fabricated and a conformal coating using Parylene was applied. Material’s dose response in a 6 MV beam was investigated using Monte-Carlo simulations. We attempted to micronize the materials using a spiral jet mill. As we did not have a water-free glovebox, we used commercially available non-hygroscopic BaFBr0.85I0.15:Eu2+ computed radiography material to test if a homogeneous panel can be made using micron-sized phosphors. Results: Dosimeters remained intact and showedmore » no change in PSL intensity after eight hrs of submersion in water. We then optically bleached the samples for reuse, irradiated and immersed for another 24 hrs. We observed marginal worsening of the PSL signal for both the soaked and un-soaked chips. By contrast, we were unable to measure PSL intensity of the un-coated pellets due to these pellets dissolving within minutes of being immersed in water. MC data indicate that the micron-sized KCl:Eu2+ is predicted to have a nearly water-equivalent response. KCl:Eu2+ particles with a median size of 3 microns can be produced using a jet mill, which could be reduced further if necessary. While the particles tend to agglomerate over time when stored in a desiccator, they still possess favorable d50’s and d99’s even after 100 minutes, providing an adequate time window for making a panel via tape casting. A panel cast using optimized methods exhibits nearly perfect particle arrangement. Conclusions: Data shown here support ongoing efforts in fabricating a reusable, high resolution dosimetry panel in a water-free glovebox using micron-sized KCl:Eu2+ particles separated by water-equivalent polymers. The conformal coating thereafter will provide good humidity resistance. HL is the founder of DoseImaging, LLC that is exclusively dedicated to commercializing this technology.« less
  • Purpose: To develop a 2D dosimetry system based on the optically stimulated luminescence (OSL) of Al{sub 2}O{sub 3}:C films for medical applications. Methods: A 2D laser scanning OSL reader was built for readout of newly developed Al2O3:C films (Landauer Inc.). An image reconstruction algorithm was developed to correct for inherent effects introduced by reader design and detector properties. The system was tested using irradiations with photon and carbon ion beams. A calibration was obtained using a 6 MV photon beam from clinical accelerator and the dose measurement precision was tested using a range of doses and different dose distributions (flatmore » field and wedge field). The dynamic range and performance of the system in the presence of large dose gradients was also tested using 430 MeV/u {sup 12}C single and multiple pencil beams. All irradiations were performed with Gafchromic EBT3 film for comparison. Results: Preliminary results demonstrate a near-linear OSL dose response to photon fields and the ability to measure dose in dose distributions such as flat field and wedge field. Tests using {sup 12}C pencil beam demonstrate ability to measure doses over four orders of magnitude. The dose profiles measured by the OSL film generally agreed well with that measured by the EBT3 film. The OSL image signal-to-noise ratio obtained in the current conditions require further improvement. On the other hand, EBT3 films had large uncertainties in the low dose region due to film-to-film or intra-film variation in the background. Conclusion: A 2D OSL dosimetry system was developed and initial tests have demonstrated a wide dynamic range as well as good agreement between the delivered and measured doses. The low background, wide dynamic range and wide range of linearity in dose response observed for the Al{sub 2}O{sub 3}:C OSL film can be beneficial for dosimetry in radiation therapy applications, especially for small field dosimetry. This work has been funded by Landauer Inc. Dr. Eduardo G. Yukihara also would like to thank the Alexander von Humboldt Foundation for his support at the DKFZ.« less
  • Despite widespread IMRT treatments at modern radiation therapy clinics, precise dosimetric commissioning of an IMRT system remains a challenge. In the most recent report from the Radiological Physics Center (RPC), nearly 20% of institutions failed an end-to-end test with an anthropomorphic head and neck phantom, a test that has rather lenient dose difference and distance-to-agreement criteria of 7% and 4 mm. The RPC report provides strong evidence that IMRT implementation is prone to error and that improved quality assurance tools are required. At the heart of radiation therapy dosimetry is the multidimensional dosimeter. However, due to the limited availability ofmore » water-equivalent dosimetry materials, research and development in this important field is challenging. In this session, we will review a few dosimeter developments that are either in the laboratory phase or in the pre-commercialization phase. 1) Radiochromic plastic. Novel formulations exhibit light absorbing optical contrast with very little scatter, enabling faster, broad beam optical CT design. 2) Storage phosphor. After irradiation, the dosimetry panels will be read out using a dedicated 2D scanning apparatus in a non-invasive, electro-optic manner and immediately restored for further use. 3) Liquid scintillator. Scintillators convert the energy from x-rays and proton beams into visible light, which can be recorded with a scientific camera (CCD or CMOS) from multiple angles. The 3D shape of the dose distribution can then be reconstructed. 4) Cherenkov emission imaging. Gated intensified imaging allows video-rate passive detection of Cherenkov emission during radiation therapy with the room lights on. Learning Objectives: To understand the physics of a variety of dosimetry techniques based upon optical imaging To investigate the strategies to overcome respective challenges and limitations To explore novel ideas of dosimeter design Supported in part by NIH Grants R01CA148853, R01CA182450, R01CA109558. Brian Pogue is founder and president of the company DoseOptics LLC, dedicated to developing and commercializing the first dedicated Cerenkov imaging camera and system for radiation dose imaging. Work reported in this talk does not involve the use of DoseOptics technology.; H. Li, this work was supported in part by NIH Grant No. R01CA148853; S. Beddar, NIH funding R01-CA182450.« less