skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: TU-H-CAMPUS-TeP1-04: Novel 3D Printed Plastic Cutouts Filled with Aluminum Oxide for Same Day Electron Radiotherapy

Abstract

Purpose: Clinics that outsource electron cutout manufacturing may be unable to simulate and treat patients on the same day. To enable same day treatment, we investigate the use of 3D printed hollow cutouts filled with 30 grit Al{sub 2}O{sub 3} powder. We verified the dosimetric equivalence of such a cutout relative to an outsourced Copper cutout. Methods: Printing was performed using a Ultibots Kossel 250 V-Slot 3D printer and polylactic acid filament. Printing files were derived from an in-house 3D model designed to mate with a Varian 6 cm electron cone. Relative to conventional cutouts (Copper or Cerrobend), the height of the hollow plastic cutout was extended by 1.0 cm to increase attenuation. Measurements were performed for 6 MeV in solid water at dmax (1.4 cm) with Gafchromic™ EBT3 film; the cutout was kidney-shaped with a long and short axis of approximately 5 and 2 cm, respectively. The Copper cutout was based on an outline of the 3D printed cutout.A calibration film was exposed immediately after the electron irradiations. All films, including an un-irradiated one, were from the same batch. Films were scanned on an Epson 10000XL flatbed scanner. Film analysis was performed in DoseLab (MOBIUS Medical Systems, Houston, Tx).more » Results: Visual comparison of the physical cutouts revealed that the Copper cutout had a slightly smaller opening than the printed cutout. Line profiles through the registered films indicated agreement within 5% in the open section. 99.9% of pixels passed gamma analysis with 2% local percent difference, 2 mm DTA, and a 25% threshold. Conclusion: Same day simulation and treatment with electrons is feasible with 3D printing of a hollow cutout filled with Al{sub 2}O{sub 3}. Future work will include evaluations of additional cutout shapes at different depths for higher energies. Other printing materials, such as bismuth, are being tested.« less

Authors:
; ;  [1]
  1. University of Michigan Health Systems, Ann Arbor, MI (United States)
Publication Date:
OSTI Identifier:
22654055
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ALUMINIUM OXIDES; COPPER; DIFFERENTIAL THERMAL ANALYSIS; MEV RANGE 01-10; PLASTICS; RADIOTHERAPY; SIMULATION

Citation Formats

Mikell, J, Lee, C, and Lam, K. TU-H-CAMPUS-TeP1-04: Novel 3D Printed Plastic Cutouts Filled with Aluminum Oxide for Same Day Electron Radiotherapy. United States: N. p., 2016. Web. doi:10.1118/1.4957677.
Mikell, J, Lee, C, & Lam, K. TU-H-CAMPUS-TeP1-04: Novel 3D Printed Plastic Cutouts Filled with Aluminum Oxide for Same Day Electron Radiotherapy. United States. doi:10.1118/1.4957677.
Mikell, J, Lee, C, and Lam, K. 2016. "TU-H-CAMPUS-TeP1-04: Novel 3D Printed Plastic Cutouts Filled with Aluminum Oxide for Same Day Electron Radiotherapy". United States. doi:10.1118/1.4957677.
@article{osti_22654055,
title = {TU-H-CAMPUS-TeP1-04: Novel 3D Printed Plastic Cutouts Filled with Aluminum Oxide for Same Day Electron Radiotherapy},
author = {Mikell, J and Lee, C and Lam, K},
abstractNote = {Purpose: Clinics that outsource electron cutout manufacturing may be unable to simulate and treat patients on the same day. To enable same day treatment, we investigate the use of 3D printed hollow cutouts filled with 30 grit Al{sub 2}O{sub 3} powder. We verified the dosimetric equivalence of such a cutout relative to an outsourced Copper cutout. Methods: Printing was performed using a Ultibots Kossel 250 V-Slot 3D printer and polylactic acid filament. Printing files were derived from an in-house 3D model designed to mate with a Varian 6 cm electron cone. Relative to conventional cutouts (Copper or Cerrobend), the height of the hollow plastic cutout was extended by 1.0 cm to increase attenuation. Measurements were performed for 6 MeV in solid water at dmax (1.4 cm) with Gafchromic™ EBT3 film; the cutout was kidney-shaped with a long and short axis of approximately 5 and 2 cm, respectively. The Copper cutout was based on an outline of the 3D printed cutout.A calibration film was exposed immediately after the electron irradiations. All films, including an un-irradiated one, were from the same batch. Films were scanned on an Epson 10000XL flatbed scanner. Film analysis was performed in DoseLab (MOBIUS Medical Systems, Houston, Tx). Results: Visual comparison of the physical cutouts revealed that the Copper cutout had a slightly smaller opening than the printed cutout. Line profiles through the registered films indicated agreement within 5% in the open section. 99.9% of pixels passed gamma analysis with 2% local percent difference, 2 mm DTA, and a 25% threshold. Conclusion: Same day simulation and treatment with electrons is feasible with 3D printing of a hollow cutout filled with Al{sub 2}O{sub 3}. Future work will include evaluations of additional cutout shapes at different depths for higher energies. Other printing materials, such as bismuth, are being tested.},
doi = {10.1118/1.4957677},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: To investigate and quantify electron contamination from the lead cutouts used in kilovoltage x-ray radiotherapy. Methods: The lead cutouts were modeled with the Monte Carlo EGSnrc user codes DOSXYZnrc and DOSRZnrc for x-ray beams ranging from 50 to 300 kV{sub p}. The results from the model were confirmed with Gafchromic film measurements. The model and measurements investigated the dose distribution with and without gladwrap shielding under the lead, and dose distributions with round, square, and serrated edge cutouts. Results: Large dose enhancement near the edges of the lead was observed due to electron contamination. At the epidermal/dermal border, theremore » is double the dose at the edge of the lead compared to the central dose due to electron contamination for a 150 kV{sub p} beam and three times the dose for a 300 kV{sub p} beam. gladwrap shielding effectively removes the contaminant dose enhancement using ten and four layers for 300 and 150 kV{sub p} beams, respectively. Conclusions: The contaminant dose enhancement is undesirable as it could cause unnecessary erythema and hyperpigmentation at the border of the treated and untreated skin and lead to a poorer cosmetic outcome. The contamination is easily removed by gladwrap shielding placed under or around the lead cutout.« less
  • Purpose: To demonstrate an efficient and clinically relevant patient specific QA method by reconstructing 3D patient dose from 2D EPID images for IMRT plans. Also to determine the usefulness of 2D QA metrics when assessing 3D patient dose deviations. Methods: Using the method developed by King et al (Med Phys 39(5),2839–2847), EPID images of IMRT fields were acquired in air and converted to dose at 10 cm depth (SAD setup) in a flat virtual water phantom. Each EPID measured dose map was then divided by the corresponding treatment planning system (TPS) dose map calculated with an identical setup, to derivemore » a 2D “error matrix”. For each field, the error matrix was used to adjust the doses along the respective ray lines in the original patient 3D dose. All field doses were combined to derive a reconstructed 3D patient dose for quantitative analysis. A software tool was developed to efficiently implement the entire process and was tested with a variety of IMRT plans for 2D (virtual flat phantom) and 3D (in-patient) QA analysis. Results: The method was tested on 60 IMRT plans. The mean (± standard deviation) 2D gamma (2%,2mm) pass rate (2D-GPR) was 97.4±3.0% and the mean 2D gamma index (2D-GI) was 0.35±0.06. The 3D PTV mean dose deviation was 1.8±0.8%. The analysis showed very weak correlations between both the 2D-GPR and 2D-GI when compared with PTV mean dose deviations (R2=0.3561 and 0.3632 respectively). Conclusion: Our method efficiently calculates 3D patient dose from 2D EPID images, utilising all of the advantages of an EPID-based dosimetry system. In this study, the 2D QA metrics did not predict the 3D patient dose deviation. This tool allows reporting of the 3D volumetric dose parameters thus providing more clinically relevant patient specific QA.« less
  • Purpose: Modern radiotherapy increasingly employs large immobilization devices, gantry attachments, and couch rotations for treatments. All of which raise the risk of collisions between the patient and the gantry / couch. Collision detection is often achieved by manually checking each couch position in the treatment room and sometimes results in extraneous imaging if collisions are detected after image based setup has begun. In the interest of improving efficiency and avoiding extra imaging, we explore the use of a surface imaging based collision detection model. Methods: Surfaces acquired from AlignRT (VisionRT, London, UK) were transferred in wavefront format to a custommore » Matlab (Mathworks, Natick, MA) software package (CCHECK). Computed tomography (CT) scans acquired at the same time were sent to CCHECK in DICOM format. In CCHECK, binary maps of the surfaces were created and overlaid on the CT images based on the fixed relationship of the AlignRT and CT coordinate systems. Isocenters were added through a graphical user interface (GUI). CCHECK then compares the inputted surfaces to a model of the linear accelerator (linac) to check for collisions at defined gantry and couch positions. Note, CCHECK may be used with or without a CT. Results: The nominal surface image field of view is 650 mm × 900 mm, with variance based on patient position and size. The accuracy of collision detections is primarily based on the linac model and the surface mapping process. The current linac model and mapping process yield detection accuracies on the order of 5 mm, assuming no change in patient posture between surface acquisition and treatment. Conclusions: CCHECK provides a non-ionizing method to check for collisions without the patient in the treatment room. Collision detection accuracy may be improved with more robust linac modeling. Additional gantry attachments (e.g. conical collimators) can be easily added to the model.« less
  • Purpose: To validate dose calculation and delivery accuracy of a recently introduced mono-isocentric technique for the treatment of multiple brain metastases in a realistic clinical case. Methods: Anonymized CT scans of a patient were used to model a hollow phantom that duplicates anatomy of the skull. A 3D printer was used to construct the phantom of a radiologically bone-equivalent material. The hollow phantom was subsequently filled with a polymer gel 3D dosimeter which also acted as a water-equivalent material. Irradiation plan consisted of 5 targets and was identical to the one delivered to the specific patient except for the prescriptionmore » dose which was optimized to match the gel dose-response characteristics. Dose delivery was performed using a single setup isocenter dynamic conformal arcs technique. Gel dose read-out was carried out by a 1.5 T MRI scanner. All steps of the corresponding patient’s treatment protocol were strictly followed providing an end-to-end quality assurance test. Pseudo-in-vivo measured 3D dose distribution and calculated one were compared in terms of spatial agreement, dose profiles, 3D gamma indices (5%/2mm, 20% dose threshold), DVHs and DVH metrics. Results: MR-identified polymerized areas and calculated high dose regions were found to agree within 1.5 mm for all targets, taking into account all sources of spatial uncertainties involved (i.e., set-up errors, MR-related geometric distortions and registration inaccuracies). Good dosimetric agreement was observed in the vast majority of the examined profiles. 3D gamma index passing rate reached 91%. DVH and corresponding metrics comparison resulted in a satisfying agreement between measured and calculated datasets within targets and selected organs-at-risk. Conclusion: A novel, pseudo-in-vivo QA test was implemented to validate spatial and dosimetric accuracy in treatment of multiple metastases. End-to-end testing demonstrated that our gel dosimetry phantom is suited for such QA procedures, allowing for 3D analysis of both targeting placement and dose.« less
  • Purpose: EPID-based patient-specific quality assurance provides verification of the planning setup and delivery process that phantomless QA and log-file based virtual dosimetry methods cannot achieve. We present a method for EPID-based QA utilizing spatially-variant EPID response kernels that allows for direct calculation of the entrance fluence and 3D phantom dose. Methods: An EPID dosimetry system was utilized for 3D dose reconstruction in a cylindrical phantom for the purposes of end-to-end QA. Monte Carlo (MC) methods were used to generate pixel-specific point-spread functions (PSFs) characterizing the spatially non-uniform EPID portal response in the presence of phantom scatter. The spatially-variant PSFs weremore » decomposed into spatially-invariant basis PSFs with the symmetric central-axis kernel as the primary basis kernel and off-axis representing orthogonal perturbations in pixel-space. This compact and accurate characterization enables the use of a modified Richardson-Lucy deconvolution algorithm to directly reconstruct entrance fluence from EPID images without iterative scatter subtraction. High-resolution phantom dose kernels were cogenerated in MC with the PSFs enabling direct recalculation of the resulting phantom dose by rapid forward convolution once the entrance fluence was calculated. A Delta4 QA phantom was used to validate the dose reconstructed in this approach. Results: The spatially-invariant representation of the EPID response accurately reproduced the entrance fluence with >99.5% fidelity with a simultaneous reduction of >60% in computational overhead. 3D dose for 10{sub 6} voxels was reconstructed for the entire phantom geometry. A 3D global gamma analysis demonstrated a >95% pass rate at 3%/3mm. Conclusion: Our approach demonstrates the capabilities of an EPID-based end-to-end QA methodology that is more efficient than traditional EPID dosimetry methods. Displacing the point of measurement external to the QA phantom reduces the necessary complexity of the phantom itself while offering a method that is highly scalable and inherently generalizable to rotational and trajectory based deliveries. This research was partially supported by Varian.« less