skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: TU-H-CAMPUS-TeP1-01: Variable-Beam Fractionation for SAbR

Abstract

Purpose: In current conventionally-fractionated as well as hypofractionated 3D conformal radiotherapy (CRT), the same beam arrangement is employed from fraction to fraction. We challenge this notion and postulate that by varying the beam arrangement between fractions we can achieve greater sparing of organs at risk (OARs) while maintaining PTV coverage. We use an inverse planning strategy using a swarm intelligence-based global optimization algorithm to exploit the additional degree of freedom represented by inter-fractional variation in beam angles. Methods: To evaluate our variable-beam fractionation (VBF) method, a 10-beam ITV-based conformal stereotactic ablative radiotherapy (CRT-SAbR) plan was optimized. In the clinical plan, 54 Gy was delivered to a 41cc lung tumor over 3 fractions. In VBF, each original clinically-assigned beam was multiplied to a bundle of n α-degree-spaced beams, n being number of fractions. Selection of α was a compromise between retaining similar tumor irradiation and separating inline OAR sub-regions. We optimized the beam fluence weights setting an upper limit for beam delivery duration (and implicitly, monitor units) along with clinical organ-based dose-volume constraints. Zero weights were allowed so that the optimization algorithm could remove unnecessary beams. All fractions in final plan had to deliver identical monitor units (MU) while satisfying amore » soft constraint on having no more than one beam from every n-beam bundle in each fraction. α was 10 degrees and the dose rate was 600 MU/min. Results: The VBF plan achieved significantly superior OAR sparing compared to the clinical internal target volume (ITV)-based plan. Setting maximum beam delivery duration to 13 seconds (well within breath-hold range), Esophagus Dmax, Heart Dmax, Spinal cord Dmax and Lung V13 were improved by 25%, 81%, 0% and 27%, respectively. Conclusion: We investigated a simple approach to inter-fractional VBF planning and demonstrated its potential in reducing dose to OARs. This work was partially supported through research funding from National Institutes of Health (R01CA169102) and Varian Medical Systems, Palo Alto, CA, USA.« less

Authors:
;  [1]
  1. University of Maryland School of Medicine, Baltimore, MD (United States)
Publication Date:
OSTI Identifier:
22654052
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BEAMS; DEGREES OF FREEDOM; DOSE RATES; FRACTIONATION; PLANNING; RADIOTHERAPY; SPINAL CORD

Citation Formats

Modiri, A, and Sawant, A. TU-H-CAMPUS-TeP1-01: Variable-Beam Fractionation for SAbR. United States: N. p., 2016. Web. doi:10.1118/1.4957674.
Modiri, A, & Sawant, A. TU-H-CAMPUS-TeP1-01: Variable-Beam Fractionation for SAbR. United States. doi:10.1118/1.4957674.
Modiri, A, and Sawant, A. Wed . "TU-H-CAMPUS-TeP1-01: Variable-Beam Fractionation for SAbR". United States. doi:10.1118/1.4957674.
@article{osti_22654052,
title = {TU-H-CAMPUS-TeP1-01: Variable-Beam Fractionation for SAbR},
author = {Modiri, A and Sawant, A},
abstractNote = {Purpose: In current conventionally-fractionated as well as hypofractionated 3D conformal radiotherapy (CRT), the same beam arrangement is employed from fraction to fraction. We challenge this notion and postulate that by varying the beam arrangement between fractions we can achieve greater sparing of organs at risk (OARs) while maintaining PTV coverage. We use an inverse planning strategy using a swarm intelligence-based global optimization algorithm to exploit the additional degree of freedom represented by inter-fractional variation in beam angles. Methods: To evaluate our variable-beam fractionation (VBF) method, a 10-beam ITV-based conformal stereotactic ablative radiotherapy (CRT-SAbR) plan was optimized. In the clinical plan, 54 Gy was delivered to a 41cc lung tumor over 3 fractions. In VBF, each original clinically-assigned beam was multiplied to a bundle of n α-degree-spaced beams, n being number of fractions. Selection of α was a compromise between retaining similar tumor irradiation and separating inline OAR sub-regions. We optimized the beam fluence weights setting an upper limit for beam delivery duration (and implicitly, monitor units) along with clinical organ-based dose-volume constraints. Zero weights were allowed so that the optimization algorithm could remove unnecessary beams. All fractions in final plan had to deliver identical monitor units (MU) while satisfying a soft constraint on having no more than one beam from every n-beam bundle in each fraction. α was 10 degrees and the dose rate was 600 MU/min. Results: The VBF plan achieved significantly superior OAR sparing compared to the clinical internal target volume (ITV)-based plan. Setting maximum beam delivery duration to 13 seconds (well within breath-hold range), Esophagus Dmax, Heart Dmax, Spinal cord Dmax and Lung V13 were improved by 25%, 81%, 0% and 27%, respectively. Conclusion: We investigated a simple approach to inter-fractional VBF planning and demonstrated its potential in reducing dose to OARs. This work was partially supported through research funding from National Institutes of Health (R01CA169102) and Varian Medical Systems, Palo Alto, CA, USA.},
doi = {10.1118/1.4957674},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: For some head and neck patients, positioning in the supine position is not well tolerated. For these patients, treatment in a seated position would be preferred. We have evaluated inter- and intra- fraction uncertainty of patient set-up in a novel treatment chair which is compatible with modern linac designs. Methods: Five head-and-neck cancer patients were positioned in the chair, fitted with immobilization devices, and imaged with orthogonal X-rays. The couch (with chair attached) was rotated to simulate delivery (without actual treatment), another set of images were acquired, providing a measure of intra-fraction displacement. The patient then got off ofmore » and back onto the chair and the process was repeated, thus providing a measure of inter-fraction set-up uncertainty. Six sub-regions in the head-and-neck were rigidly registered to evaluate local intra- and interfraction displacement. Image guidance was simulated by first registering one sub-region; the residual displacement of other sub-regions was then measured. Additionally, a patient questionnaire was administered to evaluate tolerance of the seated position. Results: The chair design is such that all advantages of couch motions may be utilized. Average inter- and intrafraction displacements of all sub-regions in the seated position were less than 2 and 3 mm, respectively. When image guidance was simulated, interfraction displacements were reduced by an average of 4 mm, providing comparable setup to the supine position. The enrolled patients, who had no indication for a seated treatment position, reported no preference for the seated or the supine position. Conclusion: The novel chair design provides acceptable inter- and intra-fraction displacement, with reproducibility similar to that observed for patients in the supine position. Such a chair will be utilized for patients who cannot tolerate the supine position and use with CBCT images for planning, in a fixed-beam linac system, and for other treatment sites is under investigation. Funding: Varian Medical Systems.« less
  • Purpose: To investigate the use of magnetic focusing for small volume proton radiosurgery targets using a triplet combination of quadrupole rare earth permanent magnet Halbach cylinder assemblies Methods: Fourteen quadrupole magnets consisting of 24 segments of radiation hard samarium-cobalt adhered into k=3 Halbach cylinders with various field gradients (100 to 250 T/m) were designed and manufactured. Triplet combinations of the magnets were placed on a positioning track on our Gantry 1 treatment table. Unmodulated 127 MeV proton beams with initial diameters of 3 to 20 mm were delivered to a water tank using single-stage scattering. Depth and transverse dose distributionsmore » were measured using a PTW PR60020 diode detector and EBT3 film, respectively. This data was compared with unfocused passively collimated beams. Monte Carlo simulations were also performed - both for comparison with experimental data and to further investigate the potential of triplet magnetic focusing. Results: Experimental results using 150 T/m gradient magnets and 15 to 20 mm initial diameter beams show peak to entrance dose ratios that are ∼ 43 to 48 % larger compared with spot size matched 8 mm collimated beams (ie, transverse profile full-widths at 90% maximum dose match within 0.5 mm of focused beams). In addition, the focusing beams were ∼ 3 to 4.4 times more efficient per MU in dose to target delivery. Additional results using different magnet combinations will also be presented. Conclusion: Our results suggest that triplet magnetic focusing could reduce entrance dose and beam number while delivering dose to small (∼≤ 10 mm diameter) radiosurgery targets in less time compared to unfocused beams. Immediate clinical applications include those associated with proton radiosurgery and functional radiosurgery of the brain and spine, however other treatment sites can be also envisioned. This project was sponsored with funding from the Department of Defense (DOD# W81XWH-BAA-10-1).« less
  • Purpose: Clinics that outsource electron cutout manufacturing may be unable to simulate and treat patients on the same day. To enable same day treatment, we investigate the use of 3D printed hollow cutouts filled with 30 grit Al{sub 2}O{sub 3} powder. We verified the dosimetric equivalence of such a cutout relative to an outsourced Copper cutout. Methods: Printing was performed using a Ultibots Kossel 250 V-Slot 3D printer and polylactic acid filament. Printing files were derived from an in-house 3D model designed to mate with a Varian 6 cm electron cone. Relative to conventional cutouts (Copper or Cerrobend), the heightmore » of the hollow plastic cutout was extended by 1.0 cm to increase attenuation. Measurements were performed for 6 MeV in solid water at dmax (1.4 cm) with Gafchromic™ EBT3 film; the cutout was kidney-shaped with a long and short axis of approximately 5 and 2 cm, respectively. The Copper cutout was based on an outline of the 3D printed cutout.A calibration film was exposed immediately after the electron irradiations. All films, including an un-irradiated one, were from the same batch. Films were scanned on an Epson 10000XL flatbed scanner. Film analysis was performed in DoseLab (MOBIUS Medical Systems, Houston, Tx). Results: Visual comparison of the physical cutouts revealed that the Copper cutout had a slightly smaller opening than the printed cutout. Line profiles through the registered films indicated agreement within 5% in the open section. 99.9% of pixels passed gamma analysis with 2% local percent difference, 2 mm DTA, and a 25% threshold. Conclusion: Same day simulation and treatment with electrons is feasible with 3D printing of a hollow cutout filled with Al{sub 2}O{sub 3}. Future work will include evaluations of additional cutout shapes at different depths for higher energies. Other printing materials, such as bismuth, are being tested.« less
  • Purpose: 3D printed custom bolus is regularly used in radiation therapy clinic as a compensator. However, usual method of bolus printing with 100% filling is very time-consuming. The purpose of this study is to evaluate the feasibility and benefit of 3D printed bolus filled with UR. Methods: Two boluses were designed on nose (9e electrons) and ear (6× photons) for a head phantom in treatment planning system (TPS) to achieve dose coverage to the skin. The bolus structures (56–167cc) were converted to STereoLithographic (STL) model using an in-house developed algorithm and sent to a commercial fused deposition modeling (FDM) printer.more » Only shells were printed with polylactic acid (PLA) material. Liquid UR was then placed in a vacuum pump and slowly poured into the hollow bolus from its top opening. Liquid UR hardened in around half an hour. The phantom was rescanned with custom boluses attached and the dosimetry was compared with original design in TPS. Basic CT and dose properties were investigated. GaF films were irradiated to measure dose profile and output of several open photon and electron beams under solid water and UR slabs of same thicknesses. Results: CT number was 11.2±7.3 and 65.4±7.8, respectively for solid water(∼1.04g/cc) and UR(∼1.08g/cc). The output measurement at dmax for 6× was within 2% for the two materials. The relative dose profiles of the two materials above dmax show 94–99% Gamma analysis passing rates for both photons and electrons. Dose distributions with 3D PUR boluses maintained great coverage on the intended skin regions and resembled that with computer generated boluses. Manufacturing 3D PUR boluses was 3–4 times faster than 100% printed boluses. The efficiency significantly improves for larger boluses. Conclusion: The study suggests UR has similar dose responses as solid water. Making custom bolus with UR greatly increases clinical workflow efficiency.« less
  • Purpose: Variance reduction techniques (VRTs) are employed in Monte Carlo simulations to obtain estimates with reduced statistical uncertainty for a given simulation time. In this work, we study the bias and efficiency of a VRT for estimating the response of imaging detectors. Methods: We implemented Directed Sampling (DS), preferentially directing a fraction of emitted optical photons directly towards the detector by altering the isotropic model. The weight of each optical photon is appropriately modified to maintain simulation estimates unbiased. We use a Monte Carlo tool called fastDETECT2 (part of the hybridMANTIS open-source package) for optical transport, modified for VRT. Themore » weight of each photon is calculated as the ratio of original probability (no VRT) and the new probability for a particular direction. For our analysis of bias and efficiency, we use pulse height spectra, point response functions, and Swank factors. We obtain results for a variety of cases including analog (no VRT, isotropic distribution), and DS with 0.2 and 0.8 optical photons directed towards the sensor plane. We used 10,000, 25-keV primaries. Results: The Swank factor for all cases in our simplified model converged fast (within the first 100 primaries) to a stable value of 0.9. The root mean square error per pixel for DS VRT for the point response function between analog and VRT cases was approximately 5e-4. Conclusion: Our preliminary results suggest that DS VRT does not affect the estimate of the mean for the Swank factor. Our findings indicate that it may be possible to design VRTs for imaging detector simulations to increase computational efficiency without introducing bias.« less