skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: TU-H-BRA-04: A Novel Superconducting Magnet Design for Optimized Patient Access and Minimal SSD for Use in a Linac-MR Hybrid

Abstract

Purpose: A prototype rotating hybrid MR imaging system and linac has been developed to allow for simultaneous imaging and radiation delivery parallel to B{sub 0}. However, the design of a compact magnet capable of rotation in a small vault with sufficient patient access and a typical clinical source-to-surface distance (SSD) is challenging. This work presents a novel superconducting magnet design that allows for a reduced SSD and ample patient access by moving the superconducting coils to the side of the yoke. The yoke and pole-plate structures are shaped to direct the magnetic flux appropriately. Methods: The surface of the pole plate for the magnet assembly is optimized. The magnetic field calculations required in this work are performed with the 3D finite element method software package Opera-3D. Each tentative design strategy is virtually modeled in this software package and externally controlled by MATLAB, with its key geometries defined as variables. The particle swarm optimization algorithm is used to optimize the variables subject to the minimization of a cost function. At each iteration, Opera-3D will solve the magnetic field solution over a field-of-view suitable for MR imaging and the degree of field uniformity will be assessed to calculate the value of themore » cost function associated with that iteration. Results: An optimized magnet assembly that generates a homogenous 0.2T magnetic field over an ellipsoid with large axis of 30 cm and small axes of 20 cm is obtained. Conclusion: The distinct features of this model are the minimal distance between the yoke’s top and the isocentre and the improved patient access. On the other hand, having homogeneity over an ellipsoid give us a larger field-of-view, essential for geometric accuracy of the MRI system. The increase of B{sub 0} from 0.2T in the present model to 0.5T is the subject of future work. Funding Sources: Alberta Innovates - Health Solutions (AIHS)| Disclosure and Conflict of Interest: B. Gino Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta biplanar linac MR for commercialization).« less

Authors:
; ;  [1]
  1. Cross Cancer Institute, Edmonton, AB (Canada)
Publication Date:
OSTI Identifier:
22654027
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BIOMEDICAL RADIOGRAPHY; COMPUTER CODES; FINITE ELEMENT METHOD; LINEAR ACCELERATORS; MAGNETIC FIELDS; MINIMIZATION; NMR IMAGING; PATIENTS

Citation Formats

Yaghoobpour Tari, S, Wachowicz, K, and Fallone, B. TU-H-BRA-04: A Novel Superconducting Magnet Design for Optimized Patient Access and Minimal SSD for Use in a Linac-MR Hybrid. United States: N. p., 2016. Web. doi:10.1118/1.4957626.
Yaghoobpour Tari, S, Wachowicz, K, & Fallone, B. TU-H-BRA-04: A Novel Superconducting Magnet Design for Optimized Patient Access and Minimal SSD for Use in a Linac-MR Hybrid. United States. doi:10.1118/1.4957626.
Yaghoobpour Tari, S, Wachowicz, K, and Fallone, B. 2016. "TU-H-BRA-04: A Novel Superconducting Magnet Design for Optimized Patient Access and Minimal SSD for Use in a Linac-MR Hybrid". United States. doi:10.1118/1.4957626.
@article{osti_22654027,
title = {TU-H-BRA-04: A Novel Superconducting Magnet Design for Optimized Patient Access and Minimal SSD for Use in a Linac-MR Hybrid},
author = {Yaghoobpour Tari, S and Wachowicz, K and Fallone, B},
abstractNote = {Purpose: A prototype rotating hybrid MR imaging system and linac has been developed to allow for simultaneous imaging and radiation delivery parallel to B{sub 0}. However, the design of a compact magnet capable of rotation in a small vault with sufficient patient access and a typical clinical source-to-surface distance (SSD) is challenging. This work presents a novel superconducting magnet design that allows for a reduced SSD and ample patient access by moving the superconducting coils to the side of the yoke. The yoke and pole-plate structures are shaped to direct the magnetic flux appropriately. Methods: The surface of the pole plate for the magnet assembly is optimized. The magnetic field calculations required in this work are performed with the 3D finite element method software package Opera-3D. Each tentative design strategy is virtually modeled in this software package and externally controlled by MATLAB, with its key geometries defined as variables. The particle swarm optimization algorithm is used to optimize the variables subject to the minimization of a cost function. At each iteration, Opera-3D will solve the magnetic field solution over a field-of-view suitable for MR imaging and the degree of field uniformity will be assessed to calculate the value of the cost function associated with that iteration. Results: An optimized magnet assembly that generates a homogenous 0.2T magnetic field over an ellipsoid with large axis of 30 cm and small axes of 20 cm is obtained. Conclusion: The distinct features of this model are the minimal distance between the yoke’s top and the isocentre and the improved patient access. On the other hand, having homogeneity over an ellipsoid give us a larger field-of-view, essential for geometric accuracy of the MRI system. The increase of B{sub 0} from 0.2T in the present model to 0.5T is the subject of future work. Funding Sources: Alberta Innovates - Health Solutions (AIHS)| Disclosure and Conflict of Interest: B. Gino Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta biplanar linac MR for commercialization).},
doi = {10.1118/1.4957626},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: The first clinical MR-linac will soon become operational, therefore patient plan QA procedures and equipment have to become MRcompatible. Reference dosimetry is affected by the magnetic field, however, relative dosimetry using patient QA systems haven’t been investigated extensively. The purpose of this study was to examine the performance characteristics of the MR-compatible ArcCHECK and Delta4 systems in a transverse 1.5 T magnetic field. Methods: Recently MR-compatible versions of both ArcCheck (Sun Nuclear) and Delta4 (Scandidos) have been developed. To examine the performance characteristics within the magnetic field, the reproducibility, dose linearity, dose rate dependence, field size and angular dependencemore » were evaluated on the MR-linac (8 MV FFF beam, SAD of 142 cm) and a conventional linac (Elekta, 6MV). To allow comparison of the measurements with and without magnetic field, the measurement setup for the conventional linac is adapted to mimic the setup at the MR-linac if possible (e.g. SAD, dose rate). The results from the MR-linac were benchmarked to the results from the conventional linac as being the clinical reference. Results: At the moment of writing, measurements for the Delta4 are still running. Therefore, only the results of the ArcCheck are presented in this abstract. No significant difference was observed in the reproducibility of the ArcCheck (<0.06%) between both linacs. The maximum dose response difference when measuring the dose linearity was less than 0.4% and the varying dose rate resulted in maximal dose differences of 1.0% for both linacs. Response variation for varying field sizes was <2.6% at the conventional linac, and <1.0% at the MR-linac. Angular response was similar for both linacs. Conclusion: The reproducibility, dose linearity, dose rate dependence, field size and angular dependence of the MR compatible ArcCheck were not influenced by the presence of a transverse 1.5 T magnetic field. The results for the Delta4 are about to follow. Equipment is generously provided by Sun Nuclear Corporation (Melbourne, USA) and Scandidos (Uppsala, Sweden)« less
  • Purpose: To quantify increase in entrance skin-dose due to magnetic fields of the Alberta longitudinal linac-MR by examining the effect of radiation energy and flattening filter, using Monte Carlo calculations and accurate 3-D models of the magnetic field. Methods: The 3-D magnetic fields generated by the bi-planar Linac-MR are calculated with FEM using Opera-3D. BEAMnrc simulates the particle phase-space in the presence of the rapidly decaying fringe field of 0.5T MRI assembled with a Varian 600C linac with an isocentre distance of 130 cm for 6 MV and 10 MV beams. Skin doses are calculated at an average depth ofmore » 70 µm using DOSXYZnrc with varying SSDs and field sizes. Furthermore, flattening filters are reshaped to compensate for the significant drop in dose rate due to increased SAD of 130 cm and skin-doses are evaluated. Results: The confinement effect of the MRI fringe field on the contaminant electrons is minimal. For SSDs of 100 – 120 cm the increase in skin dose is ∼6% – 19% and ∼1% – 9% for the 6 and 10 MV beams, respectively. For 6MV, skin dose increases from ∼10.5% to 1.5%. for field-size increases of 5×5 cm2 to 20×20 cm2. For 10 MV, skin dose increases by ∼6% for a 5×5 cm2 field, and decreases by ∼1.5% for a 20×20 cm2 field. The reshaped flattening filter increases the dose rate from 355 MU/min to 529 MU/min (6 MV) or 604 MU/min (10 MV), while the skin-dose increases by only an additional ∼2.6% (all percent increases in skin dose are relative to Dmax). Conclusion: There is minimal increase in the entrance skin dose and minimal/no decrease in the dose rate of the Alberta longitudinal linac-MR system. There is even lower skin-dose increase at 10 MV. Funding: Alberta Innovates - Health Solutions (AIHS) Conflict of Interest: Fallone is a co-founder and CEO of MagnetTx Oncology Solutions (under discussions to license Alberta bi-planar linac MR for commercialization)« less
  • Cornell University has been designing and building superconducting accelerators for various applications for more than 50 years. Currently, an energy-recovery linac (ERL) based synchrotron-light facility is proposed making use of the existing CESR facility. As part of the phase 1 R and D program funded by the NSF, critical challenges in the design were addressed, one of them being a full linac cryo-module. It houses 6 superconducting cavities- operated at 1.8 K in continuous wave (CW) mode - with individual HOM absorbers and one magnet/ BPM section. Pushing the limits, a high quality factor of the cavities (2⋅10{sup 10}) andmore » high beam currents (100 mA accelerated plus 100 mA decelerated) are targeted. We will present the design of the main linac cryo-module (MLC) being finalized recently, its cryogenic features and report on the status of the fabrication which started in late 2012.« less
  • Purpose: MRI-guided radiation therapy systems (MRIgRT) are being developed to improve online imaging during treatment delivery. At present, the operation of single point dosimeters and an ionization chamber array have been characterized in such systems. This work investigates a novel 2D diode array, named “magic plate,” for both single point calibration and 2D positional performance, the latter being a key element of modern radiotherapy techniques that will be delivered by these systems. Methods: GEANT4 Monte Carlo methods have been employed to study the dose response of a silicon diode array to 6 MV photon beams, in the presence of in-linemore » and perpendicularly aligned uniform magnetic fields. The array consists of 121 silicon diodes (dimensions 1.5 × 1.5 × 0.38 mm{sup 3}) embedded in kapton substrate with 1 cm pitch, spanning a 10 × 10 cm{sup 2} area in total. A geometrically identical, water equivalent volume was simulated concurrently for comparison. The dose response of the silicon diode array was assessed for various photon beam field shapes and sizes, including an IMRT field, at 1 T. The dose response was further investigated at larger magnetic field strengths (1.5 and 3 T) for a 4 × 4 cm{sup 2} photon field size. Results: The magic plate diode array shows excellent correspondence (< ± 1%) to water dose in the in-line orientation, for all beam arrangements and magnetic field strengths investigated. The perpendicular orientation, however, exhibits a dose shift with respect to water at the high-dose-gradient beam edge of jaw-defined fields [maximum (4.3 ± 0.8)% over-response, maximum (1.8 ± 0.8)% under-response on opposing side for 1 T, uncertainty 1σ]. The trend is not evident in areas with in-field dose gradients typical of IMRT dose maps. Conclusions: A novel 121 pixel silicon diode array detector has been characterized by Monte Carlo simulation for its performance inside magnetic fields representative of current prototype and proposed MRI–linear accelerator systems. In the in-line orientation, the silicon dose is directly proportional to the water dose. In the perpendicular orientation, there is a shift in dose response relative to water in the highest dose gradient regions, at the edge of jaw-defined and single-segment MLC fields. The trend was not observed in-field for an IMRT beam. The array is expected to be a valuable tool in MRIgRT dosimetry.« less
  • Construction of the 40 T class hybrid magnet system was completed at NRIM. The hybrid magnet will be able to generate the world`s highest continuous magnetic field of 40 T class in a 30 mm clear bore. Generation of high magnetic field with the hybrid magnet causes serious problems due to large electromagnetic force. To handle the problems, the authors have developed new type (Nb,Ti){sub 3}Sn conductors, new coil clamp technique for 15 T class superconducting magnet, new copper alloy for 25T class polihelix-type water-cooled magnet and new manufacturing procedure which includes winding and machining process for water-cooled magnets throughmore » its research and development.« less