skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: TU-H-BRC-02: Biological Dose Escalation for Liver SBRT Through Spatiotemporal Fractionation

Abstract

Purpose: Stereotactic body radiotherapy (SBRT) has become an established treatment option for liver cancer. For patients with large tumors, the prescription dose is often limited by constraints on the mean liver dose, leading to tumor recurrence. In this work, we demonstrate that spatiotemporal fractionation schemes, ie delivering distinct dose distributions in different fractions, may allow for a 10% increase in biologically effective dose (BED) in the tumor compared to current practice where each fraction delivers the same dose distribution. Methods: We consider rotation therapy delivered with x-ray beams. Treatment plan optimization is performed using objective functions evaluated for the cumulative BED delivered at the end of treatment. This allows for simultaneously optimizing multiple distinct treatment plans for different fractions. Results: The treatment that optimally exploits fractionation effects is designed such that each fraction delivers a similar dose bath to the uninvolved liver while delivering high single fraction doses to complementary parts of the target volume. Thereby, partial hypofractionation in the tumor is achieved along with near uniform fractionation in the surrounding liver - leading to an improvement in the therapeutic ratio. The benefit of such spatiotemporal fractionation schemes depends on tumor geometry and location as well as the number ofmore » fractions. For 5-fraction treatments (allowing for 5 distinct dose distributions) an improvement in the order of 10% is observed. Conclusion: Delivering distinct dose distributions in different fractions, purely motivated by fractionation effects rather than geometric changes, may improve the therapeutic ratio. For treatment sites where the prescriptions dose is limited by mean dose constraints in the surrounding organ, such as liver cancer, this approach may facilitate biological dose escalation and improved cure rates.« less

Authors:
; ; ;  [1]
  1. Massachusetts General Hospital, Boston, MA (United States)
Publication Date:
OSTI Identifier:
22654017
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; FRACTIONATED IRRADIATION; LIVER; NEOPLASMS; RADIATION DOSE DISTRIBUTIONS; RADIOTHERAPY; X RADIATION

Citation Formats

Unkelbach, J, Perko, Z, Wolfgang, J, and Hong, T. TU-H-BRC-02: Biological Dose Escalation for Liver SBRT Through Spatiotemporal Fractionation. United States: N. p., 2016. Web. doi:10.1118/1.4957609.
Unkelbach, J, Perko, Z, Wolfgang, J, & Hong, T. TU-H-BRC-02: Biological Dose Escalation for Liver SBRT Through Spatiotemporal Fractionation. United States. doi:10.1118/1.4957609.
Unkelbach, J, Perko, Z, Wolfgang, J, and Hong, T. Wed . "TU-H-BRC-02: Biological Dose Escalation for Liver SBRT Through Spatiotemporal Fractionation". United States. doi:10.1118/1.4957609.
@article{osti_22654017,
title = {TU-H-BRC-02: Biological Dose Escalation for Liver SBRT Through Spatiotemporal Fractionation},
author = {Unkelbach, J and Perko, Z and Wolfgang, J and Hong, T},
abstractNote = {Purpose: Stereotactic body radiotherapy (SBRT) has become an established treatment option for liver cancer. For patients with large tumors, the prescription dose is often limited by constraints on the mean liver dose, leading to tumor recurrence. In this work, we demonstrate that spatiotemporal fractionation schemes, ie delivering distinct dose distributions in different fractions, may allow for a 10% increase in biologically effective dose (BED) in the tumor compared to current practice where each fraction delivers the same dose distribution. Methods: We consider rotation therapy delivered with x-ray beams. Treatment plan optimization is performed using objective functions evaluated for the cumulative BED delivered at the end of treatment. This allows for simultaneously optimizing multiple distinct treatment plans for different fractions. Results: The treatment that optimally exploits fractionation effects is designed such that each fraction delivers a similar dose bath to the uninvolved liver while delivering high single fraction doses to complementary parts of the target volume. Thereby, partial hypofractionation in the tumor is achieved along with near uniform fractionation in the surrounding liver - leading to an improvement in the therapeutic ratio. The benefit of such spatiotemporal fractionation schemes depends on tumor geometry and location as well as the number of fractions. For 5-fraction treatments (allowing for 5 distinct dose distributions) an improvement in the order of 10% is observed. Conclusion: Delivering distinct dose distributions in different fractions, purely motivated by fractionation effects rather than geometric changes, may improve the therapeutic ratio. For treatment sites where the prescriptions dose is limited by mean dose constraints in the surrounding organ, such as liver cancer, this approach may facilitate biological dose escalation and improved cure rates.},
doi = {10.1118/1.4957609},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: One of the most accurate methods for radiation transport is Monte Carlo (MC) simulation. Long computation time prevents its wide applications in clinic. We have recently developed a fast MC code for carbon ion therapy called GPU-based OpenCL Carbon Monte Carlo (goCMC) and its accuracy in physical dose has been established. Since radiobiology is an indispensible aspect of carbon ion therapy, this study evaluates accuracy of goCMC in biological dose and microdosimetry by benchmarking it with FLUKA. Methods: We performed simulations of a carbon pencil beam with 150, 300 and 450 MeV/u in a homogeneous water phantom using goCMCmore » and FLUKA. Dose and energy spectra for primary and secondary ions on the central beam axis were recorded. Repair-misrepair-fixation model was employed to calculate Relative Biological Effectiveness (RBE). Monte Carlo Damage Simulation (MCDS) tool was used to calculate microdosimetry parameters. Results: Physical dose differences on the central axis were <1.6% of the maximum value. Before the Bragg peak, differences in RBE and RBE-weighted dose were <2% and <1%. At the Bragg peak, the differences were 12.5% caused by small range discrepancy and sensitivity of RBE to beam spectra. Consequently, RBE-weighted dose difference was 11%. Beyond the peak, RBE differences were <20% and primarily caused by differences in the Helium-4 spectrum. However, the RBE-weighted dose agreed within 1% due to the low physical dose. Differences in microdosimetric quantities were small except at the Bragg peak. The simulation time per source particle with FLUKA was 0.08 sec, while goCMC was approximately 1000 times faster. Conclusion: Physical doses computed by FLUKA and goCMC were in good agreement. Although relatively large RBE differences were observed at and beyond the Bragg peak, the RBE-weighted dose differences were considered to be acceptable.« less
  • Purpose: Stereotactic body radiation therapy (SBRT) has been suggested to provide high rates of local control for locally advanced pancreatic cancer. However, the close proximity of highly radiosensitive normal tissues usually causes the labor-intensive planning process, and may impede further escalation of the prescription dose. The present study evaluates the potential of an automatic planning system as a dose escalation strategy. Methods: Ten pancreatic cancer patients treated with SBRT were studied retrospectively. SBRT was delivered over 5 consecutive fractions with 6 ∼ 8Gy/fraction. Two plans were generated by Pinnacle Auto-Planning with the original prescription and escalated prescription, respectively. Escalated prescriptionmore » adds 1 Gy/fraction to the original prescription. Manually-created planning volumes were excluded in the optimization goals in order to assess the planning efficiency and quality simultaneously. Critical organs with closest proximity were used to determine the plan normalization to ensure the OAR sparing. Dosimetric parameters including D100, and conformity index (CI) were assessed. Results: Auto-plans directly generate acceptable plans for 70% of the cases without necessity of further improvement, and two more iterations at most are necessary for the rest of the cases. For the pancreas SBRT plans with the original prescription, autoplans resulted in favorable target coverage and PTV conformity (D100 = 96.3% ± 1.48%; CI = 0.88 ± 0.06). For the plans with the escalated prescriptions, no significant target under-dosage was observed, and PTV conformity remains reasonable (D100 = 93.3% ± 3.8%, and CI = 0.84 ± 0.05). Conclusion: Automatic planning, without substantial human-intervention process, results in reasonable PTV coverage and PTV conformity on the premise of adequate OAR sparing for the pancreas SBRT plans with escalated prescription. The results highlight the potential of autoplanning as a dose escalation strategy for pancreas SBRT treatment planning. Further investigations with a larger number of patients are necessary. The project is partially supported by Philips Medical Systems.« less
  • Purpose: To demonstrate fast and accurate Monte Carlo (MC) calculations of proton dose-averaged linear energy transfer (LETd) and biological dose (BD) on a Graphics Processing Unit (GPU) card. Methods: A previously validated GPU-based MC simulation of proton transport was used to rapidly generate LETd distributions for proton treatment plans. Since this MC handles proton-nuclei interactions on an event-by-event using a Bertini intranuclear cascade-evaporation model, secondary protons were taken into account. The smaller contributions of secondary neutrons and recoil nuclei were ignored. Recent work has shown that LETd values are sensitive to the scoring method. The GPU-based LETd calculations were verifiedmore » by comparing with a TOPAS custom scorer that uses tabulated stopping powers, following recommendations by other authors. Comparisons were made for prostate and head-and-neck patients. A python script is used to convert the MC-generated LETd distributions to BD using a variety of published linear quadratic models, and to export the BD in DICOM format for subsequent evaluation. Results: Very good agreement is obtained between TOPAS and our GPU MC. Given a complex head-and-neck plan with 1 mm voxel spacing, the physical dose, LETd and BD calculations for 10{sup 8} proton histories can be completed in ∼5 minutes using a NVIDIA Titan X card. The rapid turnover means that MC feedback can be obtained on dosimetric plan accuracy as well as BD hotspot locations, particularly in regards to their proximity to critical structures. In our institution the GPU MC-generated dose, LETd and BD maps are used to assess plan quality for all patients undergoing treatment. Conclusion: Fast and accurate MC-based LETd calculations can be performed on the GPU. The resulting BD maps provide valuable feedback during treatment plan review. Partially funded by Varian Medical Systems.« less
  • Purpose: To demonstrate and validate a technique for generating MRI-derived synthetic CT volumes (MRCTs) in support of adaptive liver SBRT. Methods: Under IRB approval, ten hepatocellular carcinoma patients were scanned using a single MR sequence (T1 Dixon-VIBE), yielding inherently-registered water, fat, and T1-weighted images. Air-containing voxels were identified by intensity thresholding. The envelope of the anterior vertebral bodies was segmented from the fat image by fitting a shape model to vertebral body candidate voxels, then using level sets to expand the contour outward. Fuzzy-C-Means (FCM) was then used to classify each non-air voxel in the image as fat, water, bone,more » or marrow. Bone and marrow only were classified within the vertebral body envelope. The MRCT was created by integrating the product of the FCM class probability with the assigned class density for each voxel. The resulting MRCTs were deformably aligned with planning CTs and 2-ARC SBRT VMAT plans were optimized on the MRCT density maps. Fluence was copied onto the CT density grids and dose recalculated. Results: The MRCTs faithfully reproduced most of the features visible in the corresponding CT image volumes, with exceptions of ribs and posterior spinous processes. The liver, vertebral bodies, kidneys, spleen and cord all had median HU differences of less than 75 between MRCT and CT images. PTV D99% values had an average 0.2% difference (standard deviation: 0.46%) between calculations on MRCT and CT density grids. The maximum difference in dose to 0.1cc of the PTV was 0.25% (std:0.49%). OAR dose differences were similarly small (mean:0.03Gy, std:0.26Gy). The largest normal tissue complication percentage (NTCP) difference was 1.48% (mean:0.06%, std:0.54%). Conclusions: MRCTs from a single abdominal imaging sequence are promising for use in SBRT dose calculation. Future work will focus on extending models to better define bones in the upper abdomen. Supported by NIHR01EB016079 and NIH1L30CA199594-01.« less
  • Purpose: Studies have shown that radiation boosting could help reduce prostate cancer (PCa) recurrence. Biological tumor volumes (BTV) are a high priority for such radiation boosting. The purpose of this study is to investigate the potential of radiation boosting of real patient BTVs using gold nanoparticles (GNP) released from gold-loaded brachytherapy spacers (GBS) during brachytherapy. Methods: The BTVs of 12 patients having prostate adenocarcinoma identified with positron emission tomography (PET) and CT scanner using C-11 labeled tracer [11C]acetate were investigated. The initial GNP concentration and time to achieve a dose enhancement effect (DEF) of 2 was simulated using the freelymore » downloadable software RAID APP. The investigations were carried out for low dose rate (LDR) brachytherapy sources (BTS) described in AAPM Task Group report 43: Cs-131, I-125, and Pd-103. In first case, we used 7 mg/g and 18 mg/g of GNP initial concentrations to estimate the time needed for released GNP to achieve a DEF of 2 for the different BTS, and compare with clinically relevant treatment times. In second case, we calculated the initial concentration of GNPs needed to achieve a DEF of 2 during the time the BTS would typically deliver 50%, 70% and 90% of the total dose. Results: For an initial concentration of 18 mg/g, when using Cs-131, and Pd-103, a DEF of 2 could only be achieved for BTV of 3.3 cm3 and 1 cm3 respectively. Meanwhile a DEF of 2 could be achieved for all 12 BTVs when using I-125. To achieve a DEF of 2 for all patients using Cs-131 and Pd-103, much higher initial concentrations would have to be used than have been typically employed in pre-clinical studies. Conclusion: The I-125 is the most viable BTS that can be employed with GBS to guide dose painting treatment planning for localized PCa.« less