skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: TU-FG-201-05: Varian MPC as a Statistical Process Control Tool

Abstract

Purpose: Quality assurance in radiotherapy requires the measurement of various machine parameters to ensure they remain within permitted values over time. In Truebeam release 2.0 the Machine Performance Check (MPC) was released allowing beam output and machine axis movements to be assessed in a single test. We aim to evaluate the Varian Machine Performance Check (MPC) as a tool for Statistical Process Control (SPC). Methods: Varian’s MPC tool was used on three Truebeam and one EDGE linac for a period of approximately one year. MPC was commissioned against independent systems. After this period the data were reviewed to determine whether or not the MPC was useful as a process control tool. Analyses on individual tests were analysed using Shewhart control plots, using Matlab for analysis. Principal component analysis was used to determine if a multivariate model was of any benefit in analysing the data. Results: Control charts were found to be useful to detect beam output changes, worn T-nuts and jaw calibration issues. Upper and lower control limits were defined at the 95% level. Multivariate SPC was performed using Principal Component Analysis. We found little evidence of clustering beyond that which might be naively expected such as beam uniformity andmore » beam output. Whilst this makes multivariate analysis of little use it suggests that each test is giving independent information. Conclusion: The variety of independent parameters tested in MPC makes it a sensitive tool for routine machine QA. We have determined that using control charts in our QA programme would rapidly detect changes in machine performance. The use of control charts allows large quantities of tests to be performed on all linacs without visual inspection of all results. The use of control limits alerts users when data are inconsistent with previous measurements before they become out of specification. A. Carver has received a speaker’s honorarium from Varian.« less

Authors:
;  [1]
  1. The Clatterbridge Cancer Centre NHS Foundation Trust, Bebington, Wirral (United Kingdom)
Publication Date:
OSTI Identifier:
22653987
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
07 ISOTOPES AND RADIATION SOURCES; 61 RADIATION PROTECTION AND DOSIMETRY; BEAMS; LINEAR ACCELERATORS; MULTIVARIATE ANALYSIS; PERFORMANCE; PROCESS CONTROL; QUALITY ASSURANCE

Citation Formats

Carver, A, and Rowbottom, C. TU-FG-201-05: Varian MPC as a Statistical Process Control Tool. United States: N. p., 2016. Web. doi:10.1118/1.4957528.
Carver, A, & Rowbottom, C. TU-FG-201-05: Varian MPC as a Statistical Process Control Tool. United States. doi:10.1118/1.4957528.
Carver, A, and Rowbottom, C. Wed . "TU-FG-201-05: Varian MPC as a Statistical Process Control Tool". United States. doi:10.1118/1.4957528.
@article{osti_22653987,
title = {TU-FG-201-05: Varian MPC as a Statistical Process Control Tool},
author = {Carver, A and Rowbottom, C},
abstractNote = {Purpose: Quality assurance in radiotherapy requires the measurement of various machine parameters to ensure they remain within permitted values over time. In Truebeam release 2.0 the Machine Performance Check (MPC) was released allowing beam output and machine axis movements to be assessed in a single test. We aim to evaluate the Varian Machine Performance Check (MPC) as a tool for Statistical Process Control (SPC). Methods: Varian’s MPC tool was used on three Truebeam and one EDGE linac for a period of approximately one year. MPC was commissioned against independent systems. After this period the data were reviewed to determine whether or not the MPC was useful as a process control tool. Analyses on individual tests were analysed using Shewhart control plots, using Matlab for analysis. Principal component analysis was used to determine if a multivariate model was of any benefit in analysing the data. Results: Control charts were found to be useful to detect beam output changes, worn T-nuts and jaw calibration issues. Upper and lower control limits were defined at the 95% level. Multivariate SPC was performed using Principal Component Analysis. We found little evidence of clustering beyond that which might be naively expected such as beam uniformity and beam output. Whilst this makes multivariate analysis of little use it suggests that each test is giving independent information. Conclusion: The variety of independent parameters tested in MPC makes it a sensitive tool for routine machine QA. We have determined that using control charts in our QA programme would rapidly detect changes in machine performance. The use of control charts allows large quantities of tests to be performed on all linacs without visual inspection of all results. The use of control limits alerts users when data are inconsistent with previous measurements before they become out of specification. A. Carver has received a speaker’s honorarium from Varian.},
doi = {10.1118/1.4957528},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: A novel computer software system, namely APDV (Automatic Pre-Delivery Verification), has been developed for verifying patient treatment plan parameters right prior to treatment deliveries in order to automatically detect and prevent catastrophic errors. Methods: APDV is designed to continuously monitor new DICOM plan files on the TMS computer at the treatment console. When new plans to be delivered are detected, APDV checks the consistencies of plan parameters and high-level plan statistics using underlying rules and statistical properties based on given treatment site, technique and modality. These rules were quantitatively derived by retrospectively analyzing all the EBRT treatment plans ofmore » the past 8 years at authors’ institution. Therapists and physicists will be notified with a warning message displayed on the TMS computer if any critical errors are detected, and check results, confirmation, together with dismissal actions will be saved into database for further review. Results: APDV was implemented as a stand-alone program using C# to ensure required real time performance. Mean values and standard deviations were quantitatively derived for various plan parameters including MLC usage, MU/cGy radio, beam SSD, beam weighting, and the beam gantry angles (only for lateral targets) per treatment site, technique and modality. 2D-based rules of combined MU/cGy ratio and averaged SSD values were also derived using joint probabilities of confidence error ellipses. The statistics of these major treatment plan parameters quantitatively evaluate the consistency of any treatment plans which facilitates automatic APDV checking procedures. Conclusion: APDV could be useful in detecting and preventing catastrophic errors immediately before treatment deliveries. Future plan including automatic patient identify and patient setup checks after patient daily images are acquired by the machine and become available on the TMS computer. This project is supported by the Agency for Healthcare Research and Quality (AHRQ) under award 1R01HS0222888. The senior author received research grants from ViewRay Inc. and Varian Medical System.« less
  • Purpose: To create a Varian TrueBeam 6 MV FFF Monte Carlo model using BEAMnrc/EGSnrc that accurately reproduces the Varian representative dataset, followed by tuning the model’s source parameters to accurately reproduce in-house measurements. Methods: A BEAMnrc TrueBeam model for 6 MV FFF has been created by modifying a validated 6 MV Varian CL21EX model. Geometric dimensions and materials were adjusted in a trial and error approach to match the fluence and spectra of TrueBeam phase spaces output by the Varian VirtuaLinac. Once the model’s phase space matched Varian’s counterpart using the default source parameters, it was validated to match 10more » × 10 cm{sup 2} Varian representative data obtained with the IBA CC13. The source parameters were then tuned to match in-house 5 × 5 cm{sup 2} PTW microDiamond measurements. All dose to water simulations included detector models to include the effects of volume averaging and the non-water equivalence of the chamber materials, allowing for more accurate source parameter selection. Results: The Varian phase space spectra and fluence were matched with excellent agreement. The in-house model’s PDD agreement with CC13 TrueBeam representative data was within 0.9% local percent difference beyond the first 3 mm. Profile agreement at 10 cm depth was within 0.9% local percent difference and 1.3 mm distance-to-agreement in the central axis and penumbra regions, respectively. Once the source parameters were tuned, PDD agreement with microDiamond measurements was within 0.9% local percent difference beyond 2 mm. The microDiamond profile agreement at 10 cm depth was within 0.6% local percent difference and 0.4 mm distance-to-agreement in the central axis and penumbra regions, respectively. Conclusion: An accurate in-house Monte Carlo model of the Varian TrueBeam was achieved independently of the Varian phase space solution and was tuned to in-house measurements. KO acknowledges partial support by the CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering Research Council (Grant number: 432290).« less
  • Purpose: To report on the initial developments of a clinical 3-dimensional (3D) prompt gamma (PG) imaging system for proton radiotherapy range verification. Methods: The new imaging system under development consists of a prototype Compton camera to measure PG emission during proton beam irradiation and software to reconstruct, display, and analyze 3D images of the PG emission. For initial test of the system, PGs were measured with a prototype CC during a 200 cGy dose delivery with clinical proton pencil beams (ranging from 100 MeV – 200 MeV) to a water phantom. Measurements were also carried out with the CC placedmore » 15 cm from the phantom for a full range 150 MeV pencil beam and with its range shifted by 2 mm. Reconstructed images of the PG emission were displayed by the clinical PG imaging software and compared to the dose distributions of the proton beams calculated by a commercial treatment planning system. Results: Measurements made with the new PG imaging system showed that a 3D image could be reconstructed from PGs measured during the delivery of 200 cGy of dose, and that shifts in the Bragg peak range of as little as 2 mm could be detected. Conclusion: Initial tests of a new PG imaging system show its potential to provide 3D imaging and range verification for proton radiotherapy. Based on these results, we have begun work to improve the system with the goal that images can be produced from delivery of as little as 20 cGy so that the system could be used for in-vivo proton beam range verification on a daily basis.« less
  • Purpose: Demonstrate and quantify the augmented resolution due to focalspot size decrease in images acquired on the anode side of the field, for both small and medium (0.3 and 0.6mm) focal-spot sizes using the experimental task-based GM-ROD metric. Theoretical calculations have shown that a medium focal-spot can achieve the resolution of a small focal-spot if acquired with a tilted anode, effectively providing a higher-output small focal-spot. Methods: The MAF-CMOS (micro-angiographic fluoroscopic complementary-metal-oxide semiconductor) detector (75µm pixel pitch) imaged two copper wire segments of different diameter and a pipeline stent at the central axis and on the anode side of themore » beam, achieved by tilting the x-ray C-arm (Toshiba Infinix) to 6° and realigning the detector with the perpendicular ray to correct for x-ray obliquity. The relative gain in resolution was determined using the GM-ROD metric, which compares images on the basis of the Fourier transform of the image and the measured NNPS. To emphasize the geometric unsharpness, images were acquired at a magnification of two. Results: Images acquired on the anode side were compared to those acquired on the central axis with the same target-area focal-spot to consider the effect of an angled tube, and for all three objects the advantage of the smaller effective focal-spot was clear, showing a maximum improvement of 36% in GM-ROD. The images obtained with the small focal-spot at the central axis were compared to those of the medium focal-spot at the anode side and, for all objects, the relative performance was comparable. Conclusion: For three objects, the GM-ROD demonstrated the advantage of the anode side focal-spot. The comparable performance of the medium focal-spot on the anode side will allow for a high-output small focal-spot; a necessity in endovascular image-guided interventions. Partial support from an NIH grant R01EB002873 and an equipment grant from Toshiba Medical Systems Corp.« less
  • Purpose: To describe the clinical use of a Linear Accelerator (Linac) DailyQA system with only EPID and OBI. To assess the reliability over an 18-month period and improve the robustness of this system based on QA failure analysis. Methods: A DailyQA solution utilizing an in-house designed phantom, combined EPID and OBI image acquisitions, and a web-based data analysis and reporting system was commissioned and used in our clinic to measure geometric, dosimetry and imaging components of a Varian Truebeam Linac. During an 18-month period (335 working days), the Daily QA results, including the output constancy, beam flatness and symmetry, uniformity,more » TPR20/10, MV and KV imaging quality, were collected and analyzed. For output constancy measurement, an independent monthly QA system with an ionization chamber (IC) and annual/incidental TG51 measurements with ADCL IC were performed and cross-compared to Daily QA system. Thorough analyses were performed on the recorded QA failures to evaluate the machine performance, optimize the data analysis algorithm, adjust the tolerance setting and improve the training procedure to prevent future failures. Results: A clinical workflow including beam delivery, data analysis, QA report generation and physics approval was established and optimized to suit daily clinical operation. The output tests over the 335 working day period cross-correlated with the monthly QA system within 1.3% and TG51 results within 1%. QA passed with one attempt on 236 days out of 335 days. Based on the QA failures analysis, the Gamma criteria is revised from (1%, 1mm) to (2%, 1mm) considering both QA accuracy and efficiency. Data analysis algorithm is improved to handle multiple entries for a repeating test. Conclusion: We described our 18-month clinical experience on a novel DailyQA system using only EPID and OBI. The long term data presented demonstrated the system is suitable and reliable for Linac daily QA.« less