skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: TU-D-207B-05: Intra-Tumor Partitioning and Texture Analysis of DCE-MRI Identifies Relevant Tumor Subregions to Predict Early Pathological Response of Breast Cancer to Neoadjuvant Chemotherapy

Abstract

Purpose: To predict early pathological response of breast cancer to neoadjuvant chemotherapy (NAC) based on quantitative, multi-region analysis of dynamic contrast enhancement magnetic resonance imaging (DCE-MRI). Methods: In this institution review board-approved study, 35 patients diagnosed with stage II/III breast cancer were retrospectively investigated using DCE-MR images acquired before and after the first cycle of NAC. First, principal component analysis (PCA) was used to reduce the dimensionality of the DCE-MRI data with a high-temporal resolution. We then partitioned the whole tumor into multiple subregions using k-means clustering based on the PCA-defined eigenmaps. Within each tumor subregion, we extracted four quantitative Haralick texture features based on the gray-level co-occurrence matrix (GLCM). The change in texture features in each tumor subregion between pre- and during-NAC was used to predict pathological complete response after NAC. Results: Three tumor subregions were identified through clustering, each with distinct enhancement characteristics. In univariate analysis, all imaging predictors except one extracted from the tumor subregion associated with fast wash-out were statistically significant (p< 0.05) after correcting for multiple testing, with area under the ROC curve or AUCs between 0.75 and 0.80. In multivariate analysis, the proposed imaging predictors achieved an AUC of 0.79 (p = 0.002) inmore » leave-one-out cross validation. This improved upon conventional imaging predictors such as tumor volume (AUC=0.53) and texture features based on whole-tumor analysis (AUC=0.65). Conclusion: The heterogeneity of the tumor subregion associated with fast wash-out on DCE-MRI predicted early pathological response to neoadjuvant chemotherapy in breast cancer.« less

Authors:
; ; ;  [1]
  1. Stanford University, Palo Alto, CA (United States)
Publication Date:
OSTI Identifier:
22653983
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BIOMEDICAL RADIOGRAPHY; CHEMOTHERAPY; IMAGES; MAGNETIC RESONANCE; MAMMARY GLANDS; MULTIVARIATE ANALYSIS; NEOPLASMS; NMR IMAGING

Citation Formats

Wu, J, Gong, G, Cui, Y, and Li, R. TU-D-207B-05: Intra-Tumor Partitioning and Texture Analysis of DCE-MRI Identifies Relevant Tumor Subregions to Predict Early Pathological Response of Breast Cancer to Neoadjuvant Chemotherapy. United States: N. p., 2016. Web. doi:10.1118/1.4957513.
Wu, J, Gong, G, Cui, Y, & Li, R. TU-D-207B-05: Intra-Tumor Partitioning and Texture Analysis of DCE-MRI Identifies Relevant Tumor Subregions to Predict Early Pathological Response of Breast Cancer to Neoadjuvant Chemotherapy. United States. doi:10.1118/1.4957513.
Wu, J, Gong, G, Cui, Y, and Li, R. Wed . "TU-D-207B-05: Intra-Tumor Partitioning and Texture Analysis of DCE-MRI Identifies Relevant Tumor Subregions to Predict Early Pathological Response of Breast Cancer to Neoadjuvant Chemotherapy". United States. doi:10.1118/1.4957513.
@article{osti_22653983,
title = {TU-D-207B-05: Intra-Tumor Partitioning and Texture Analysis of DCE-MRI Identifies Relevant Tumor Subregions to Predict Early Pathological Response of Breast Cancer to Neoadjuvant Chemotherapy},
author = {Wu, J and Gong, G and Cui, Y and Li, R},
abstractNote = {Purpose: To predict early pathological response of breast cancer to neoadjuvant chemotherapy (NAC) based on quantitative, multi-region analysis of dynamic contrast enhancement magnetic resonance imaging (DCE-MRI). Methods: In this institution review board-approved study, 35 patients diagnosed with stage II/III breast cancer were retrospectively investigated using DCE-MR images acquired before and after the first cycle of NAC. First, principal component analysis (PCA) was used to reduce the dimensionality of the DCE-MRI data with a high-temporal resolution. We then partitioned the whole tumor into multiple subregions using k-means clustering based on the PCA-defined eigenmaps. Within each tumor subregion, we extracted four quantitative Haralick texture features based on the gray-level co-occurrence matrix (GLCM). The change in texture features in each tumor subregion between pre- and during-NAC was used to predict pathological complete response after NAC. Results: Three tumor subregions were identified through clustering, each with distinct enhancement characteristics. In univariate analysis, all imaging predictors except one extracted from the tumor subregion associated with fast wash-out were statistically significant (p< 0.05) after correcting for multiple testing, with area under the ROC curve or AUCs between 0.75 and 0.80. In multivariate analysis, the proposed imaging predictors achieved an AUC of 0.79 (p = 0.002) in leave-one-out cross validation. This improved upon conventional imaging predictors such as tumor volume (AUC=0.53) and texture features based on whole-tumor analysis (AUC=0.65). Conclusion: The heterogeneity of the tumor subregion associated with fast wash-out on DCE-MRI predicted early pathological response to neoadjuvant chemotherapy in breast cancer.},
doi = {10.1118/1.4957513},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}