skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: TU-D-209-01: Dosimetry of Diagnostic Work Up Mammography

Abstract

Purpose: To investigate patient average glandular dose (AGD) characteristics of diagnostic mammography. Methods: The techniques used to image 14420 patients who received diagnostic work up mammography from October 2008 to December 2014 at one academic hospital were retrospectively collected. The most common diagnostic views and the techniques used for each according to compressed breast thickness were determined. For all techniques, 1st half value layer and air kerma output per tube current-exposure time product were measured; then the incident air kerma for each acquisition was calculated. The values for normalized glandular dose (DgN) were obtained with a validated Monte Carlo simulation of mammographic acquisition. The mono-energetic DgN results were combined according to relative fluence using the TASMICS model to obtain DgN coefficients for each spectrum. The spectral DgN and calculated incident air kerma were used to estimate AGD of patients with breast thickness ranging from 2 to 8 cm. Results: The most common views utilized during diagnostic mammography were magnification craniocaudal (24%), magnification mediolateral (19%), spot craniocaudal (28%), and spot mediolateral oblique (24%). The AGD increased with increasing breast thickness for both the magnification and spot views. The AGD for a 5.5 cm thick breast was approximately 6.8 mGy and 2.2more » mGy for the magnification and spot views, respectively. The AGD ranged from 3.6 mGy to 6.8 mGy for the magnification views and from 1.0 mGy to 3.1 mGy for spot views. The difference in AGD between the two magnification views or the two spot views was not significant. Conclusion: These results provide information on breast dose to which screening recalled women are exposed to. In addition to understanding the dose used for common clinical imaging tests, this data could be used when comparing use of mammography for diagnostic workup to other potential modalities, such as breast tomosynthesis and breast CT.« less

Authors:
 [1];  [2]
  1. Emory University, Atlanta, GA (United States)
  2. Radboud University Medical Centre, Nijmegen (Netherlands)
Publication Date:
OSTI Identifier:
22653973
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BIOMEDICAL RADIOGRAPHY; COMPUTERIZED SIMULATION; KERMA; MAMMARY GLANDS; MONTE CARLO METHOD; PATIENTS; RADIATION DOSES; THICKNESS

Citation Formats

Jallow, N, and Sechopoulos, I. TU-D-209-01: Dosimetry of Diagnostic Work Up Mammography. United States: N. p., 2016. Web. doi:10.1118/1.4957502.
Jallow, N, & Sechopoulos, I. TU-D-209-01: Dosimetry of Diagnostic Work Up Mammography. United States. doi:10.1118/1.4957502.
Jallow, N, and Sechopoulos, I. Wed . "TU-D-209-01: Dosimetry of Diagnostic Work Up Mammography". United States. doi:10.1118/1.4957502.
@article{osti_22653973,
title = {TU-D-209-01: Dosimetry of Diagnostic Work Up Mammography},
author = {Jallow, N and Sechopoulos, I},
abstractNote = {Purpose: To investigate patient average glandular dose (AGD) characteristics of diagnostic mammography. Methods: The techniques used to image 14420 patients who received diagnostic work up mammography from October 2008 to December 2014 at one academic hospital were retrospectively collected. The most common diagnostic views and the techniques used for each according to compressed breast thickness were determined. For all techniques, 1st half value layer and air kerma output per tube current-exposure time product were measured; then the incident air kerma for each acquisition was calculated. The values for normalized glandular dose (DgN) were obtained with a validated Monte Carlo simulation of mammographic acquisition. The mono-energetic DgN results were combined according to relative fluence using the TASMICS model to obtain DgN coefficients for each spectrum. The spectral DgN and calculated incident air kerma were used to estimate AGD of patients with breast thickness ranging from 2 to 8 cm. Results: The most common views utilized during diagnostic mammography were magnification craniocaudal (24%), magnification mediolateral (19%), spot craniocaudal (28%), and spot mediolateral oblique (24%). The AGD increased with increasing breast thickness for both the magnification and spot views. The AGD for a 5.5 cm thick breast was approximately 6.8 mGy and 2.2 mGy for the magnification and spot views, respectively. The AGD ranged from 3.6 mGy to 6.8 mGy for the magnification views and from 1.0 mGy to 3.1 mGy for spot views. The difference in AGD between the two magnification views or the two spot views was not significant. Conclusion: These results provide information on breast dose to which screening recalled women are exposed to. In addition to understanding the dose used for common clinical imaging tests, this data could be used when comparing use of mammography for diagnostic workup to other potential modalities, such as breast tomosynthesis and breast CT.},
doi = {10.1118/1.4957502},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}