skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: TU-D-201-06: HDR Plan Prechecks Using Eclipse Scripting API

Abstract

Purpose: Automate brachytherapy treatment plan quality check using Eclipse v13.6 scripting API based on pre-configured rules to minimize human error and maximize efficiency. Methods: The HDR Precheck system is developed based on a rules-driven approach using Eclipse scripting API. This system checks for critical plan parameters like channel length, first source position, source step size and channel mapping. The planned treatment time is verified independently based on analytical methods. For interstitial or SAVI APBI treatment plans, a Patterson-Parker system calculation is performed to verify the planned treatment time. For endobronchial treatments, an analytical formula from TG-59 is used. Acceptable tolerances were defined based on clinical experiences in our department. The system was designed to show PASS/FAIL status levels. Additional information, if necessary, is indicated appropriately in a separate comments field in the user interface. Results: The HDR Precheck system has been developed and tested to verify the treatment plan parameters that are routinely checked by the clinical physicist. The report also serves as a reminder or checklist for the planner to perform any additional critical checks such as applicator digitization or scenarios where the channel mapping was intentionally changed. It is expected to reduce the current manual plan check timemore » from 15 minutes to <1 minute. Conclusion: Automating brachytherapy plan prechecks significantly reduces treatment plan precheck time and reduces human errors. When fully developed, this system will be able to perform TG-43 based second check of the treatment planning system’s dose calculation using random points in the target and critical structures. A histogram will be generated along with tabulated mean and standard deviation values for each structure. A knowledge database will also be developed for Brachyvision plans which will then be used for knowledge-based plan quality checks to further reduce treatment planning errors and increase confidence in the planned treatment.« less

Authors:
; ; ;  [1]
  1. Baylor Scott & White Health, Temple, TX (United States)
Publication Date:
OSTI Identifier:
22653970
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; 61 RADIATION PROTECTION AND DOSIMETRY; BRACHYTHERAPY; ECLIPSE; ERRORS; PLANNING; RADIATION SOURCE IMPLANTS; RADIOPHARMACEUTICALS

Citation Formats

Palaniswaamy, G, Morrow, A, Kim, S, and Rangaraj, D. TU-D-201-06: HDR Plan Prechecks Using Eclipse Scripting API. United States: N. p., 2016. Web. doi:10.1118/1.4957472.
Palaniswaamy, G, Morrow, A, Kim, S, & Rangaraj, D. TU-D-201-06: HDR Plan Prechecks Using Eclipse Scripting API. United States. doi:10.1118/1.4957472.
Palaniswaamy, G, Morrow, A, Kim, S, and Rangaraj, D. Wed . "TU-D-201-06: HDR Plan Prechecks Using Eclipse Scripting API". United States. doi:10.1118/1.4957472.
@article{osti_22653970,
title = {TU-D-201-06: HDR Plan Prechecks Using Eclipse Scripting API},
author = {Palaniswaamy, G and Morrow, A and Kim, S and Rangaraj, D},
abstractNote = {Purpose: Automate brachytherapy treatment plan quality check using Eclipse v13.6 scripting API based on pre-configured rules to minimize human error and maximize efficiency. Methods: The HDR Precheck system is developed based on a rules-driven approach using Eclipse scripting API. This system checks for critical plan parameters like channel length, first source position, source step size and channel mapping. The planned treatment time is verified independently based on analytical methods. For interstitial or SAVI APBI treatment plans, a Patterson-Parker system calculation is performed to verify the planned treatment time. For endobronchial treatments, an analytical formula from TG-59 is used. Acceptable tolerances were defined based on clinical experiences in our department. The system was designed to show PASS/FAIL status levels. Additional information, if necessary, is indicated appropriately in a separate comments field in the user interface. Results: The HDR Precheck system has been developed and tested to verify the treatment plan parameters that are routinely checked by the clinical physicist. The report also serves as a reminder or checklist for the planner to perform any additional critical checks such as applicator digitization or scenarios where the channel mapping was intentionally changed. It is expected to reduce the current manual plan check time from 15 minutes to <1 minute. Conclusion: Automating brachytherapy plan prechecks significantly reduces treatment plan precheck time and reduces human errors. When fully developed, this system will be able to perform TG-43 based second check of the treatment planning system’s dose calculation using random points in the target and critical structures. A histogram will be generated along with tabulated mean and standard deviation values for each structure. A knowledge database will also be developed for Brachyvision plans which will then be used for knowledge-based plan quality checks to further reduce treatment planning errors and increase confidence in the planned treatment.},
doi = {10.1118/1.4957472},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: Errors found during initial physics plan checks frequently require replanning and reprinting, resulting decreased departmental efficiency. Additionally, errors may be missed during physics checks, resulting in potential treatment errors or interruption. This work presents a process control created using the Eclipse Scripting API (ESAPI) enabling dosimetrists and physicists to detect potential errors in the Eclipse treatment planning system prior to performing any plan approvals or printing. Methods: Potential failure modes for five categories were generated based on available ESAPI (v11) patient object properties: Images, Contours, Plans, Beams, and Dose. An Eclipse script plugin (PlanCheck) was written in C# tomore » check errors most frequently observed clinically in each of the categories. The PlanCheck algorithms were devised to check technical aspects of plans, such as deliverability (e.g. minimum EDW MUs), in addition to ensuring that policy and procedures relating to planning were being followed. The effect on clinical workflow efficiency was measured by tracking the plan document error rate and plan revision/retirement rates in the Aria database over monthly intervals. Results: The number of potential failure modes the PlanCheck script is currently capable of checking for in the following categories: Images (6), Contours (7), Plans (8), Beams (17), and Dose (4). Prior to implementation of the PlanCheck plugin, the observed error rates in errored plan documents and revised/retired plans in the Aria database was 20% and 22%, respectively. Error rates were seen to decrease gradually over time as adoption of the script improved. Conclusion: A process control created using the Eclipse scripting API enabled plan checks to occur within the planning system, resulting in reduction in error rates and improved efficiency. Future work includes: initiating full FMEA for planning workflow, extending categories to include additional checks outside of ESAPI via Aria database queries, and eventual automated plan checks.« less
  • Purpose: High dose rate endorectal brachytherapy is an option to deliver a focal, high-dose radiotherapy to rectal tumors for patients undergoing non-operative management. We investigate a new multichannel, MR compatible applicator with a novel balloon-based design to provide improved treatment geometry. We report on the initial clinical experience using this applicator. Methods: Patients were enrolled on an IRB-approved, dose-escalation protocol evaluating the use of the anorectal (AR-1) applicator (Ancer Medical, Hialeah, FL), a multichannel applicator with two concentric balloons. The inner balloon supports 8 source lumens; the compliant outer balloon expands to separate the normal rectal wall and the sourcemore » lumens, yet deforms around a firm, exophytic rectal mass, leading to dose escalation to tumor while sparing normal rectum. Under general anesthesia, gold fiducial markers were inserted above and below the tumor, and the AR applicator was placed in the rectum. MRI-based treatment plans were prepared to deliver 15 Gy in 3 weekly fractions to the target volume while sparing healthy rectal tissue, bladder, bowel and anal muscles. Prior to each treatment, CBCT/Fluoroscopy were used to place the applicator in the treatment position and confirm the treatment geometry using rigid registration of the CBCT and planning MRI. After registration of the applicator images, positioning was evaluated based on the match of the gold markers. Results: Highly conformal treatment plans were achieved. MR compatibility of the applicator enabled good tumor visualization. In spite of the non-rigid nature of the applicators and the fact that a new applicator was used at each treatment session, treatment geometry was reproducible to within 2.5 mm. Conclusions: This is the first report on using the AR applicator in patients. Highly conformal plans, confidence in MRI target delineation, in combination with reproducible treatment geometry provide encouraging feedback for continuation with dose escalation in these patients.« less
  • Purpose: To perform a pilot study for remote dosimetric credentialing of intensity modulated radiation therapy (IMRT) based clinical trials. The study introduces a novel, time efficient and inexpensive dosimetry audit method for multi-center credentialing. The method employs electronic portal imaging device (EPID) to reconstruct delivered dose inside a virtual flat/cylindrical water phantom. Methods: Five centers, including different accelerator types and treatment planning systems (TPS), were asked to download two CT data sets of a Head and Neck (H&N) and Postprostatectomy (P-P) patients to produce benchmark plans. These were then transferred to virtual flat and cylindrical phantom data sets that weremore » also provided. In-air EPID images of the plans were then acquired, and the data sent to the central site for analysis. At the central site, these were converted to DICOM format, all images were used to reconstruct 2D and 3D dose distributions inside respectively the flat and cylindrical phantoms using inhouse EPID to dose conversion software. 2D dose was calculated for individual fields and 3D dose for the combined fields. The results were compared to corresponding TPS doses. Three gamma criteria were used, 3%3mm-3%/2mm–2%/2mm with a 10% dose threshold, to compare the calculated and prescribed dose. Results: All centers had a high pass rate for the criteria of 3%/3 mm. For 2D dose, the average of centers mean pass rate was 99.6% (SD: 0.3%) and 99.8% (SD: 0.3%) for respectively H&N and PP patients. For 3D dose, 3D gamma was used to compare the model dose with TPS combined dose. The mean pass rate was 97.7% (SD: 2.8%) and 98.3% (SD: 1.6%). Conclusion: Successful performance of the method for the pilot centers establishes the method for dosimetric multi-center credentialing. The results are promising and show a high level of gamma agreement and, the procedure is efficient, consistent and inexpensive. Funding has been provided from Department of Radiation Oncology, TROG Cancer Research and the University of Newcastle. Narges Miri is a recipient of a University of Newcastle postgraduate scholarship.« less
  • Purpose: AAPM Task Group (TG) 275 is charged with developing riskbased guidelines for plan and chart review clinical processes. As part of this work an AAPM-wide survey was conducted to gauge current practices. Methods: The survey consisted of 103 multiple-choice questions covering the following review processes for external beam including protons: 1) Initial Plan Check, 2) On-Treatment and 3) End-of-Treatment Chart Check. The survey was designed and validated by TG members with the goal of providing an efficient and easy response process. The survey, developed and deployed with the support of AAPM headquarters, was released to all AAPM members whomore » have self-reported as working in the radiation oncology field and it was kept open for 7 weeks. Results: There are an estimated 4700 eligible participants. At the time of writing, 962 completed surveys have been collected with an average completion time of 24 minutes. Participants are mainly from community hospitals (40%), academicaffiliated hospitals (31%) and free-standing clinics (18%). Among many other metrics covered on the survey, results so far indicate that manual review is an important component on the plan and chart review process (>90%) and that written procedures and checklists are widely used (>60%). However, the details of what is reviewed or checked are fairly heterogeneous among the sampled medical physics community. Conclusion: The data gathered from the survey gauging current practices will be used by TG 275 to develop benchmarks and recommendations for the type and extent of checks to perform effective physics plan and chart review processes.« less
  • Purpose: A novel computer software system, namely APDV (Automatic Pre-Delivery Verification), has been developed for verifying patient treatment plan parameters right prior to treatment deliveries in order to automatically detect and prevent catastrophic errors. Methods: APDV is designed to continuously monitor new DICOM plan files on the TMS computer at the treatment console. When new plans to be delivered are detected, APDV checks the consistencies of plan parameters and high-level plan statistics using underlying rules and statistical properties based on given treatment site, technique and modality. These rules were quantitatively derived by retrospectively analyzing all the EBRT treatment plans ofmore » the past 8 years at authors’ institution. Therapists and physicists will be notified with a warning message displayed on the TMS computer if any critical errors are detected, and check results, confirmation, together with dismissal actions will be saved into database for further review. Results: APDV was implemented as a stand-alone program using C# to ensure required real time performance. Mean values and standard deviations were quantitatively derived for various plan parameters including MLC usage, MU/cGy radio, beam SSD, beam weighting, and the beam gantry angles (only for lateral targets) per treatment site, technique and modality. 2D-based rules of combined MU/cGy ratio and averaged SSD values were also derived using joint probabilities of confidence error ellipses. The statistics of these major treatment plan parameters quantitatively evaluate the consistency of any treatment plans which facilitates automatic APDV checking procedures. Conclusion: APDV could be useful in detecting and preventing catastrophic errors immediately before treatment deliveries. Future plan including automatic patient identify and patient setup checks after patient daily images are acquired by the machine and become available on the TMS computer. This project is supported by the Agency for Healthcare Research and Quality (AHRQ) under award 1R01HS0222888. The senior author received research grants from ViewRay Inc. and Varian Medical System.« less