skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MO-FG-CAMPUS-JeP3-03: Detection of Unpredictable Patient Movement During SBRT Using a Single KV Projection of An On-Board CBCT System: Simulation Study

Abstract

Purpose: An unpredictable movement of a patient can occur during SBRT even when immobilization devices are applied. In the SBRT treatments using a conventional linear accelerator detection of such movements relies heavily on human interaction and monitoring. This study aims to detect such positional abnormalities in real-time by assessing intra-fractional gantry mounted kV projection images of a patient’s spine. Methods: We propose a self-CBCT image based spine tracking method consisting of the following steps: (1)Acquire a pre-treatment CBCT image; (2)Transform the CBCT volume according to the couch correction; (3)Acquire kV projections during treatment beam delivery; (4)Simultaneously with each acquisition generate a DRR from the CBCT volume based-on the current projection geometry; (5)Perform an intensity gradient-based 2D registration between spine ROI images of the projection and the DRR images; (6)Report an alarm if the detected 2D displacement is beyond a threshold value. To demonstrate the feasibility, retrospective simulations were performed on 1,896 projections from nine CBCT sessions of three patients who received lung SBRT. The unpredictable movements were simulated by applying random rotations and translations to the reference CBCT prior to each DRR generation. As the ground truth, the 3D translations and/or rotations causing >3 mm displacement of the midpoint ofmore » the thoracic spine were regarded as abnormal. In the measurements, different threshold values of 2D displacement were tested to investigate sensitivity and specificity of the proposed method. Results: A linear relationship between the ground truth 3D displacement and the detected 2D displacement was observed (R{sup 2} = 0.44). When the 2D displacement threshold was set to 3.6 mm the overall sensitivity and specificity were 77.7±5.7% and 77.9±3.5% respectively. Conclusion: In this simulation study, it was demonstrated that intrafractional kV projections from an on-board CBCT system have a potential to detect unpredictable patient movement during SBRT. This research is funded by Interfractional Imaging Research Grant from Elekta.« less

Authors:
; ;  [1]
  1. Massachusetts General Hospital and Harvard Medical School, Boston, MA (United States)
Publication Date:
OSTI Identifier:
22653915
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BIOMEDICAL RADIOGRAPHY; COMPUTERIZED TOMOGRAPHY; EQUIPMENT; GROUND TRUTH MEASUREMENTS; IMAGES; LINEAR ACCELERATORS; PATIENTS; SIMULATION; VERTEBRAE

Citation Formats

Park, Y, Sharp, G, and Winey, B. MO-FG-CAMPUS-JeP3-03: Detection of Unpredictable Patient Movement During SBRT Using a Single KV Projection of An On-Board CBCT System: Simulation Study. United States: N. p., 2016. Web. doi:10.1118/1.4957378.
Park, Y, Sharp, G, & Winey, B. MO-FG-CAMPUS-JeP3-03: Detection of Unpredictable Patient Movement During SBRT Using a Single KV Projection of An On-Board CBCT System: Simulation Study. United States. doi:10.1118/1.4957378.
Park, Y, Sharp, G, and Winey, B. Wed . "MO-FG-CAMPUS-JeP3-03: Detection of Unpredictable Patient Movement During SBRT Using a Single KV Projection of An On-Board CBCT System: Simulation Study". United States. doi:10.1118/1.4957378.
@article{osti_22653915,
title = {MO-FG-CAMPUS-JeP3-03: Detection of Unpredictable Patient Movement During SBRT Using a Single KV Projection of An On-Board CBCT System: Simulation Study},
author = {Park, Y and Sharp, G and Winey, B},
abstractNote = {Purpose: An unpredictable movement of a patient can occur during SBRT even when immobilization devices are applied. In the SBRT treatments using a conventional linear accelerator detection of such movements relies heavily on human interaction and monitoring. This study aims to detect such positional abnormalities in real-time by assessing intra-fractional gantry mounted kV projection images of a patient’s spine. Methods: We propose a self-CBCT image based spine tracking method consisting of the following steps: (1)Acquire a pre-treatment CBCT image; (2)Transform the CBCT volume according to the couch correction; (3)Acquire kV projections during treatment beam delivery; (4)Simultaneously with each acquisition generate a DRR from the CBCT volume based-on the current projection geometry; (5)Perform an intensity gradient-based 2D registration between spine ROI images of the projection and the DRR images; (6)Report an alarm if the detected 2D displacement is beyond a threshold value. To demonstrate the feasibility, retrospective simulations were performed on 1,896 projections from nine CBCT sessions of three patients who received lung SBRT. The unpredictable movements were simulated by applying random rotations and translations to the reference CBCT prior to each DRR generation. As the ground truth, the 3D translations and/or rotations causing >3 mm displacement of the midpoint of the thoracic spine were regarded as abnormal. In the measurements, different threshold values of 2D displacement were tested to investigate sensitivity and specificity of the proposed method. Results: A linear relationship between the ground truth 3D displacement and the detected 2D displacement was observed (R{sup 2} = 0.44). When the 2D displacement threshold was set to 3.6 mm the overall sensitivity and specificity were 77.7±5.7% and 77.9±3.5% respectively. Conclusion: In this simulation study, it was demonstrated that intrafractional kV projections from an on-board CBCT system have a potential to detect unpredictable patient movement during SBRT. This research is funded by Interfractional Imaging Research Grant from Elekta.},
doi = {10.1118/1.4957378},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: EPID-based patient-specific quality assurance provides verification of the planning setup and delivery process that phantomless QA and log-file based virtual dosimetry methods cannot achieve. We present a method for EPID-based QA utilizing spatially-variant EPID response kernels that allows for direct calculation of the entrance fluence and 3D phantom dose. Methods: An EPID dosimetry system was utilized for 3D dose reconstruction in a cylindrical phantom for the purposes of end-to-end QA. Monte Carlo (MC) methods were used to generate pixel-specific point-spread functions (PSFs) characterizing the spatially non-uniform EPID portal response in the presence of phantom scatter. The spatially-variant PSFs weremore » decomposed into spatially-invariant basis PSFs with the symmetric central-axis kernel as the primary basis kernel and off-axis representing orthogonal perturbations in pixel-space. This compact and accurate characterization enables the use of a modified Richardson-Lucy deconvolution algorithm to directly reconstruct entrance fluence from EPID images without iterative scatter subtraction. High-resolution phantom dose kernels were cogenerated in MC with the PSFs enabling direct recalculation of the resulting phantom dose by rapid forward convolution once the entrance fluence was calculated. A Delta4 QA phantom was used to validate the dose reconstructed in this approach. Results: The spatially-invariant representation of the EPID response accurately reproduced the entrance fluence with >99.5% fidelity with a simultaneous reduction of >60% in computational overhead. 3D dose for 10{sub 6} voxels was reconstructed for the entire phantom geometry. A 3D global gamma analysis demonstrated a >95% pass rate at 3%/3mm. Conclusion: Our approach demonstrates the capabilities of an EPID-based end-to-end QA methodology that is more efficient than traditional EPID dosimetry methods. Displacing the point of measurement external to the QA phantom reduces the necessary complexity of the phantom itself while offering a method that is highly scalable and inherently generalizable to rotational and trajectory based deliveries. This research was partially supported by Varian.« less
  • Purpose: Liver SBRT patients unable to tolerate breath-hold for radiotherapy are treated free-breathing with image guidance. Target localization using 3D CBCT requires extra margins to accommodate the respiratory motion. The purpose of this study is to evaluate the accuracy and reproducibility of 4D CT-on-rails in target localization for free-breathing liver SBRT. Methods: A Siemens SOMATOM CT-on-Rails 4D with Anzai Pressure Belt system was used both as the simulation and the localization CT. Fiducial marker was placed close to the center of the target prior to the simulation. Amplitude based sorting was used in the scan. Eight or sixteen phases ofmore » reconstructed CT sets (depends on breathing pattern) can be sent to Velocity to create the maximum intensity projection (MIP) image set. Target ITV and fiducial ITV were drawn based on the MIP image. In patient localization, a 4D scan was taken with the same settings as the sim scan. Images were registered to match fiducial ITVs. Results: Ten liver cancer patients treated for 50Gy over 5 fractions, with amplitudes of breathing motion ranging from 4.3–14.5 mm, were analyzed in this study. Results show that the Intra & inter fraction variability in liver motion amplitude significantly less than the baseline inter-fraction shifts in liver position. 90% of amplitude change is less than 3 mm. The differences in the D99 and D95 GTV dose coverage between the 4D CT-on-Rails and the CBCT plan were small (within 5%) for all the selected cases. However, the average PTV volume by using the 4D CT-on-Rails is 37% less than the CBCT PTV volume. Conclusion: Simulation and Registration using 4D CT-on-Rails provides accurate target localization and is unaffected by larger breathing amplitudes as seen with 3D CBCT image registration. Localization with 4D CT-on-Rails can significantly reduce the PTV volume with sufficient tumor.« less
  • Purpose: This study utilizes the Taguchi Method to evaluate the VMAT planning parameters of single isocenter treatment plans for multiple brain metastases. An optimization model based on Taguchi and utility concept is employed to optimize the planning parameters including: arc arrangement, calculation grid size, calculation model, and beam energy on multiple performance characteristics namely conformity index and dose to normal brain. Methods: Treatment plans, each with 4 metastatic brain lesions were planned using single isocenter technique. The collimator angles were optimized to avoid open areas. In this analysis four planning parameters (a–d) were considered: (a)-Arc arrangements: set1: Gantry 181cw179 couch0;more » gantry179ccw0, couch315; and gantry0ccw181, couch45. set2: set1 plus additional arc: Gantry 0cw179, couch270. (b)-Energy: 6-MV; 6MV-FFF (c)-Calculation grid size: 1mm; 1.5mm (d)-Calculation models: AAA; Acuros Treatment planning was performed in Varian Eclipse (ver.11.0.30). A suitable orthogonal array was selected (L8) to perform the experiments. After conducting the experiments with the combinations of planning parameters the conformity index (CI) and the normal brain dose S/N ratio for each parameter was calculated. Optimum levels for the multiple response optimizations were determined. Results: We determined that the factors most affecting the conformity index are arc arrangement and beam energy. These tests were also used to evaluate dose to normal brain. In these evaluations, the significant parameters were grid size and calculation model. Using the utility concept we determined the combination of each of the four factors tested in this study that most significantly influence quality of the resulting treatment plans: (a)-arc arrangement-set2, (b)-6MV, (c)-calc.grid 1mm, (d)-Acuros algorithm. Overall, the dominant significant influences on plan quality are (a)-arcarrangement, and (b)-beamenergy. Conclusion: Results were analyzed using ANOVA and were found to be within the confidence interval. Further investigation using this methodology. Such parameters might include: virtual OAR and optimization criterion such as normal tissue objective.« less
  • Purpose: To develop a generalized statistical model that incorporates the treatment uncertainty from the rotational error of single iso-center technique, and calculate the additional PTV (planning target volume) margin required to compensate for this error. Methods: The random vectors for setup and additional rotation errors in the three-dimensional (3D) patient coordinate system were assumed to follow the 3D independent normal distribution with zero mean, and standard deviations σx, σy, σz, for setup error and a uniform σR for rotational error. Both random vectors were summed, normalized and transformed to the spherical coordinates to derive the chi distribution with 3 degreesmore » of freedom for the radical distance ρ. PTV margin was determined using the critical value of this distribution for 0.05 significant level so that 95% of the time the treatment target would be covered by ρ. The additional PTV margin required to compensate for the rotational error was calculated as a function of σx, σy, σz and σR. Results: The effect of the rotational error is more pronounced for treatments that requires high accuracy/precision like stereotactic radiosurgery (SRS) or stereotactic body radiotherapy (SBRT). With a uniform 2mm PTV margin (or σx =σy=σz=0.7mm), a σR=0.32mm will decrease the PTV coverage from 95% to 90% of the time, or an additional 0.2mm PTV margin is needed to prevent this loss of coverage. If we choose 0.2 mm as the threshold, any σR>0.3mm will lead to an additional PTV margin that cannot be ignored, and the maximal σR that can be ignored is 0.0064 rad (or 0.37°) for iso-to-target distance=5cm, or 0.0032 rad (or 0.18°) for iso-to-target distance=10cm. Conclusions: The rotational error cannot be ignored for high-accuracy/-precision treatments like SRS/SBRT, particularly when the distance between the iso-center and target is large.« less
  • Purpose: To develop a novel approach to improve cervical spine (c-spine) curvature reproducibility for head and neck (HN) patients using optical surface imaging (OSI) with two regions of interests (ROIs). Methods: The OSI-guided, two-step setup procedure requires two ROIs: ROI-1 of the shoulders and ROI-2 of the face. The neck can be stretched or squeezed in superior-inferior (SI) direction using a specially-designed sliding head support. We hypothesize that when these two ROIs are aligned, the c-spine should fall into a naturally reproducible position under same setup conditions. An anthropomorphous phantom test was performed to examine neck pitch angles comparing withmore » the calculated angles. Three volunteers participated in the experiments, which start with conventional HN setup using skin markers and room lasers. An OSI image and lateral photo-picture were acquired as the references. In each of the three replicate tests, conventional setup was first applied after volunteers got on the couch. ROI-1 was aligned by moving the body, followed by ROI-2 alignment via adjusting head position and orientation under real-time OSI guidance. A final static OSI image and lateral picture were taken to evaluate both anterior and posterior surface alignments. Three degrees of freedom can be adjusted if an open-face mask was applied, including head SI shift using the sliding head support and pitch-and-roll rotations using a commercial couch extension. Surface alignment was analyzed comparing with conventional setup. Results: The neck pitch angle measured by OSI is consistent with the calculated (0.2±0.6°). Volunteer study illustrated improved c-spine setup reproducibility using OSI comparing with conventional setup. ROI alignments with 2mm/1° tolerance are achieved within 3 minutes. Identical knee support is important to achieve ROI-1 pitch alignment. Conclusion: The feasibility of this novel approach has been demonstrated for c-spine curvature setup reproducibility. Further evaluation is necessary with bony alignment variation in patient studies. This study is in part supported by the NIH (U54CA137788).« less