skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MO-FG-209-02: Development of a Virtual Breast Phantom From a Multi-Modality Perspective

Abstract

This symposium will review recent advances in the simulation methods for evaluation of novel breast imaging systems – the subject of AAPM Task Group TG234. Our focus will be on the various approaches to development and validation of software anthropomorphic phantoms and their use in the statistical assessment of novel imaging systems using such phantoms along with computational models for the x-ray image formation process. Due to the dynamic development and complex design of modern medical imaging systems, the simulation of anatomical structures, image acquisition modalities, and the image perception and analysis offers substantial benefits of reduced cost, duration, and radiation exposure, as well as the known ground-truth and wide variability in simulated anatomies. For these reasons, Virtual Clinical Trials (VCTs) have been increasingly accepted as a viable tool for preclinical assessment of x-ray and other breast imaging methods. Activities of TG234 have encompassed the optimization of protocols for simulation studies, including phantom specifications, the simulated data representation, models of the imaging process, and statistical assessment of simulated images. The symposium will discuss the state-of-the-science of VCTs for novel breast imaging systems, emphasizing recent developments and future directions. Presentations will discuss virtual phantoms for intermodality breast imaging performance comparisons, extensionmore » of the breast anatomy simulation to the cellular level, optimized integration of the simulated imaging chain, and the novel directions in the observer models design. Learning Objectives: Review novel results in developing and applying virtual phantoms for inter-modality breast imaging performance comparisons; Discuss the efforts to extend the computer simulation of breast anatomy and pathology to the cellular level; Summarize the state of the science in optimized integration of modules in the simulated imaging chain; Compare novel directions in the design of observer models for task based validation of imaging systems. PB: Research funding support from the NIH, NSF, and Komen for the Cure; NIH funded collaboration with Barco, Inc. and Hologic, Inc.; Consultant to Delaware State Univ. and NCCPM, UK. AA: Employed at Barco Healthcare.; P. Bakic, NIH: (NIGMS P20 #GM103446, NCI R01 #CA154444); M. Das, NIH Research grants.« less

Authors:
Publication Date:
OSTI Identifier:
22653881
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ABSORPTION SPECTROSCOPY; ANATOMY; BIOMEDICAL RADIOGRAPHY; CLINICAL TRIALS; COMPUTER CODES; COMPUTERIZED SIMULATION; DESIGN; IMAGES; MAMMARY GLANDS; PHANTOMS; X RADIATION

Citation Formats

Graff, C. MO-FG-209-02: Development of a Virtual Breast Phantom From a Multi-Modality Perspective. United States: N. p., 2016. Web. doi:10.1118/1.4957326.
Graff, C. MO-FG-209-02: Development of a Virtual Breast Phantom From a Multi-Modality Perspective. United States. doi:10.1118/1.4957326.
Graff, C. 2016. "MO-FG-209-02: Development of a Virtual Breast Phantom From a Multi-Modality Perspective". United States. doi:10.1118/1.4957326.
@article{osti_22653881,
title = {MO-FG-209-02: Development of a Virtual Breast Phantom From a Multi-Modality Perspective},
author = {Graff, C.},
abstractNote = {This symposium will review recent advances in the simulation methods for evaluation of novel breast imaging systems – the subject of AAPM Task Group TG234. Our focus will be on the various approaches to development and validation of software anthropomorphic phantoms and their use in the statistical assessment of novel imaging systems using such phantoms along with computational models for the x-ray image formation process. Due to the dynamic development and complex design of modern medical imaging systems, the simulation of anatomical structures, image acquisition modalities, and the image perception and analysis offers substantial benefits of reduced cost, duration, and radiation exposure, as well as the known ground-truth and wide variability in simulated anatomies. For these reasons, Virtual Clinical Trials (VCTs) have been increasingly accepted as a viable tool for preclinical assessment of x-ray and other breast imaging methods. Activities of TG234 have encompassed the optimization of protocols for simulation studies, including phantom specifications, the simulated data representation, models of the imaging process, and statistical assessment of simulated images. The symposium will discuss the state-of-the-science of VCTs for novel breast imaging systems, emphasizing recent developments and future directions. Presentations will discuss virtual phantoms for intermodality breast imaging performance comparisons, extension of the breast anatomy simulation to the cellular level, optimized integration of the simulated imaging chain, and the novel directions in the observer models design. Learning Objectives: Review novel results in developing and applying virtual phantoms for inter-modality breast imaging performance comparisons; Discuss the efforts to extend the computer simulation of breast anatomy and pathology to the cellular level; Summarize the state of the science in optimized integration of modules in the simulated imaging chain; Compare novel directions in the design of observer models for task based validation of imaging systems. PB: Research funding support from the NIH, NSF, and Komen for the Cure; NIH funded collaboration with Barco, Inc. and Hologic, Inc.; Consultant to Delaware State Univ. and NCCPM, UK. AA: Employed at Barco Healthcare.; P. Bakic, NIH: (NIGMS P20 #GM103446, NCI R01 #CA154444); M. Das, NIH Research grants.},
doi = {10.1118/1.4957326},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Multi-modality imaging has an increasing role in the diagnosis and treatment of a large number of diseases, particularly if both functional and anatomical information are acquired and accurately co-registered. Hence, there is a resulting need for multi modality phantoms in order to validate image co-registration and calibrate the imaging systems. We present our PET-ultrasound phantom development, including PET and ultrasound images of a simple prostate phantom. We use agar and gelatin mixed with a radioactive solution. We also present our development of custom multi-modality phantoms that are compatible with PET, transrectal ultrasound (TRUS), MRI and CT imaging. We describe bothmore » our selection of tissue mimicking materials and phantom construction procedures. These custom PET-TRUS-CT-MRI prostate phantoms use agargelatin radioactive mixtures with additional contrast agents and preservatives. We show multi-modality images of these custom prostate phantoms, as well as discuss phantom construction alternatives. Although we are currently focused on prostate imaging, this phantom development is applicable to many multi-modality imaging applications.« less
  • Purpose: In our previous study a preclinical multi-modality quality assurance (QA) phantom that contains five tumor-simulating test objects with 2, 4, 7, 10 and 14 mm diameters was developed for accurate tumor size measurement by researchers during cancer drug development and testing. This study analyzed the errors during tumor volume measurement from preclinical magnetic resonance (MR), micro-computed tomography (micro- CT) and ultrasound (US) images acquired in a rodent tumor model using the preclinical multi-modality QA phantom. Methods: Using preclinical 7-Tesla MR, US and micro-CT scanners, images were acquired of subcutaneous SCC4 tumor xenografts in nude rats (3–4 rats per group;more » 5 groups) along with the QA phantom using the same imaging protocols. After tumors were excised, in-air micro-CT imaging was performed to determine reference tumor volume. Volumes measured for the rat tumors and phantom test objects were calculated using formula V = (π/6)*a*b*c where a, b and c are the maximum diameters in three perpendicular dimensions determined by the three imaging modalities. Then linear regression analysis was performed to compare image-based tumor volumes with the reference tumor volume and known test object volume for the rats and the phantom respectively. Results: The slopes of regression lines for in-vivo tumor volumes measured by three imaging modalities were 1.021, 1.101 and 0.862 for MRI, micro-CT and US respectively. For phantom, the slopes were 0.9485, 0.9971 and 0.9734 for MRI, micro-CT and US respectively. Conclusion: For both animal and phantom studies, random and systematic errors were observed. Random errors were observer-dependent and systematic errors were mainly due to selected imaging protocols and/or measurement method. In the animal study, there were additional systematic errors attributed to ellipsoidal assumption for tumor shape. The systematic errors measured using the QA phantom need to be taken into account to reduce measurement errors during the animal study.« less
  • Purpose: MRI has become an attractive tool for tumor motion management. Current MR-compatible phantoms are only capable of reproducing translational motion. This study describes the construction and validation of a more realistic, MRI-compatible lung phantom that is deformable internally as well as externally. We demonstrate a radiotherapy application of this phantom by validating the geometric accuracy of the open-source deformable image registration software NiftyReg (UCL, UK). Methods: The outer shell of a commercially-available dynamic breathing torso phantom was filled with natural latex foam with eleven water tubes. A rigid foam cut-out served as the diaphragm. A high-precision programmable, in-house, MRI-compatiblemore » motion platform was used to drive the diaphragm. The phantom was imaged on a 3T scanner (Philips, Ingenia). Twenty seven tumor traces previously recorded from lung cancer patients were programmed into the phantom and 2D+t image sequences were acquired using a sparse-sampling sequence k-t BLAST (accn=3, resolution=0.66×0.66×5mm3; acquisition-time=110ms/slice). The geometric fidelity of the MRI-derived trajectories was validated against those obtained via fluoroscopy using the on board kV imager on a Truebeam linac. NiftyReg was used to perform frame by frame deformable image registration. The location of each marker predicted by using NiftyReg was compared with the values calculated by intensity-based segmentation on each frame. Results: In all cases, MR trajectories were within 1 mm of corresponding fluoroscopy trajectories. RMSE between centroid positions obtained from segmentation with those obtained by NiftyReg varies from 0.1 to 0.21 mm in the SI direction and 0.08 to 0.13 mm in the LR direction showing the high accuracy of deformable registration. Conclusion: We have successfully designed and demonstrated a phantom that can accurately reproduce deformable motion under a variety of imaging modalities including MRI, CT and x-ray fluodoscopy, making it an invaluable research tool for validating novel motion management strategies. This work was partially supported through research funding from National Institutes of Health (R01CA169102).« less
  • Purpose: To develop a comprehensive end-to-end test for Varian's TrueBeam linear accelerator for head and neck IMRT using a custom phantom designed to utilize multiple dosimetry devices. Methods: The initial end-to-end test and custom H and N phantom were designed to yield maximum information in anatomical regions significant to H and N plans with respect to: i) geometric accuracy, ii) dosimetric accuracy, and iii) treatment reproducibility. The phantom was designed in collaboration with Integrated Medical Technologies. A CT image was taken with a 1mm slice thickness. The CT was imported into Varian's Eclipse treatment planning system, where OARs and themore » PTV were contoured. A clinical template was used to create an eight field static gantry angle IMRT plan. After optimization, dose was calculated using the Analytic Anisotropic Algorithm with inhomogeneity correction. Plans were delivered with a TrueBeam equipped with a high definition MLC. Preliminary end-to-end results were measured using film and ion chambers. Ion chamber dose measurements were compared to the TPS. Films were analyzed with FilmQAPro using composite gamma index. Results: Film analysis for the initial end-to-end plan with a geometrically simple PTV showed average gamma pass rates >99% with a passing criterion of 3% / 3mm. Film analysis of a plan with a more realistic, ie. complex, PTV yielded pass rates >99% in clinically important regions containing the PTV, spinal cord and parotid glands. Ion chamber measurements were on average within 1.21% of calculated dose for both plans. Conclusion: trials have demonstrated that our end-to-end testing methods provide baseline values for the dosimetric and geometric accuracy of Varian's TrueBeam system.« less
  • Purpose: Physical phantoms are essential for the development, optimization, and evaluation of x-ray breast imaging systems. Recognizing the major effect of anatomy on image quality and clinical performance, such phantoms should ideally reflect the three-dimensional structure of the human breast. Currently, there is no commercially available three-dimensional physical breast phantom that is anthropomorphic. The authors present the development of a new suite of physical breast phantoms based on human data. Methods: The phantoms were designed to match the extended cardiac-torso virtual breast phantoms that were based on dedicated breast computed tomography images of human subjects. The phantoms were fabricated bymore » high-resolution multimaterial additive manufacturing (3D printing) technology. The glandular equivalency of the photopolymer materials was measured relative to breast tissue-equivalent plastic materials. Based on the current state-of-the-art in the technology and available materials, two variations were fabricated. The first was a dual-material phantom, the Doublet. Fibroglandular tissue and skin were represented by the most radiographically dense material available; adipose tissue was represented by the least radiographically dense material. The second variation, the Singlet, was fabricated with a single material to represent fibroglandular tissue and skin. It was subsequently filled with adipose-equivalent materials including oil, beeswax, and permanent urethane-based polymer. Simulated microcalcification clusters were further included in the phantoms via crushed eggshells. The phantoms were imaged and characterized visually and quantitatively. Results: The mammographic projections and tomosynthesis reconstructed images of the fabricated phantoms yielded realistic breast background. The mammograms of the phantoms demonstrated close correlation with simulated mammographic projection images of the corresponding virtual phantoms. Furthermore, power-law descriptions of the phantom images were in general agreement with real human images. The Singlet approach offered more realistic contrast as compared to the Doublet approach, but at the expense of air bubbles and air pockets that formed during the filling process. Conclusions: The presented physical breast phantoms and their matching virtual breast phantoms offer realistic breast anatomy, patient variability, and ease of use, making them a potential candidate for performing both system quality control testing and virtual clinical trials.« less