skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MO-FG-202-01: A Fast Yet Sensitive EPID-Based Real-Time Treatment Verification System

Abstract

Purpose: To create a real-time EPID-based treatment verification system which robustly detects treatment delivery and patient attenuation variations. Methods: Treatment plan DICOM files sent to the record-and-verify system are captured and utilized to predict EPID images for each planned control point using a modified GPU-based digitally reconstructed radiograph algorithm which accounts for the patient attenuation, source energy fluence, source size effects, and MLC attenuation. The DICOM and predicted images are utilized by our C++ treatment verification software which compares EPID acquired 1024×768 resolution frames acquired at ∼8.5hz from Varian Truebeam™ system. To maximize detection sensitivity, image comparisons determine (1) if radiation exists outside of the desired treatment field; (2) if radiation is lacking inside the treatment field; (3) if translations, rotations, and magnifications of the image are within tolerance. Acquisition was tested with known test fields and prior patient fields. Error detection was tested in real-time and utilizing images acquired during treatment with another system. Results: The computational time of the prediction algorithms, for a patient plan with 350 control points and 60×60×42cm^3 CT volume, is 2–3minutes on CPU and <27 seconds on GPU for 1024×768 images. The verification software requires a maximum of ∼9ms and ∼19ms for 512×384 andmore » 1024×768 resolution images, respectively, to perform image analysis and dosimetric validations. Typical variations in geometric parameters between reference and the measured images are 0.32°for gantry rotation, 1.006 for scaling factor, and 0.67mm for translation. For excess out-of-field/missing in-field fluence, with masks extending 1mm (at isocenter) from the detected aperture edge, the average total in-field area missing EPID fluence was 1.5mm2 the out-of-field excess EPID fluence was 8mm^2, both below error tolerances. Conclusion: A real-time verification software, with EPID images prediction algorithm, was developed. The system is capable of performing verifications between frames acquisitions and identifying source(s) of any out-of-tolerance variations. This work was supported in part by Varian Medical Systems.« less

Authors:
; ; ;  [1];
  1. University of Virginia Health System, Charlottesville, VA (United States)
Publication Date:
OSTI Identifier:
22653873
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ALGORITHMS; ATTENUATION; COMPUTER CODES; FORECASTING; IMAGE PROCESSING; PATIENTS; SENSITIVITY; VARIATIONS; VERIFICATION

Citation Formats

Ahmad, M, Nourzadeh, H, Neal, B, Siebers, J, and Watkins, W. MO-FG-202-01: A Fast Yet Sensitive EPID-Based Real-Time Treatment Verification System. United States: N. p., 2016. Web. doi:10.1118/1.4957303.
Ahmad, M, Nourzadeh, H, Neal, B, Siebers, J, & Watkins, W. MO-FG-202-01: A Fast Yet Sensitive EPID-Based Real-Time Treatment Verification System. United States. doi:10.1118/1.4957303.
Ahmad, M, Nourzadeh, H, Neal, B, Siebers, J, and Watkins, W. 2016. "MO-FG-202-01: A Fast Yet Sensitive EPID-Based Real-Time Treatment Verification System". United States. doi:10.1118/1.4957303.
@article{osti_22653873,
title = {MO-FG-202-01: A Fast Yet Sensitive EPID-Based Real-Time Treatment Verification System},
author = {Ahmad, M and Nourzadeh, H and Neal, B and Siebers, J and Watkins, W},
abstractNote = {Purpose: To create a real-time EPID-based treatment verification system which robustly detects treatment delivery and patient attenuation variations. Methods: Treatment plan DICOM files sent to the record-and-verify system are captured and utilized to predict EPID images for each planned control point using a modified GPU-based digitally reconstructed radiograph algorithm which accounts for the patient attenuation, source energy fluence, source size effects, and MLC attenuation. The DICOM and predicted images are utilized by our C++ treatment verification software which compares EPID acquired 1024×768 resolution frames acquired at ∼8.5hz from Varian Truebeam™ system. To maximize detection sensitivity, image comparisons determine (1) if radiation exists outside of the desired treatment field; (2) if radiation is lacking inside the treatment field; (3) if translations, rotations, and magnifications of the image are within tolerance. Acquisition was tested with known test fields and prior patient fields. Error detection was tested in real-time and utilizing images acquired during treatment with another system. Results: The computational time of the prediction algorithms, for a patient plan with 350 control points and 60×60×42cm^3 CT volume, is 2–3minutes on CPU and <27 seconds on GPU for 1024×768 images. The verification software requires a maximum of ∼9ms and ∼19ms for 512×384 and 1024×768 resolution images, respectively, to perform image analysis and dosimetric validations. Typical variations in geometric parameters between reference and the measured images are 0.32°for gantry rotation, 1.006 for scaling factor, and 0.67mm for translation. For excess out-of-field/missing in-field fluence, with masks extending 1mm (at isocenter) from the detected aperture edge, the average total in-field area missing EPID fluence was 1.5mm2 the out-of-field excess EPID fluence was 8mm^2, both below error tolerances. Conclusion: A real-time verification software, with EPID images prediction algorithm, was developed. The system is capable of performing verifications between frames acquisitions and identifying source(s) of any out-of-tolerance variations. This work was supported in part by Varian Medical Systems.},
doi = {10.1118/1.4957303},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: To design and develop a real-time electronic portal imaging device (EPID)-based delivery verification system for dynamic intensity modulated radiation therapy (IMRT) which enables detection of gross treatment delivery errors before delivery of substantial radiation to the patient.Methods: The system utilizes a comprehensive physics-based model to generate a series of predicted transit EPID image frames as a reference dataset and compares these to measured EPID frames acquired during treatment. The two datasets are using MLC aperture comparison and cumulative signal checking techniques. The system operation in real-time was simulated offline using previously acquired images for 19 IMRT patient deliveries withmore » both frame-by-frame comparison and cumulative frame comparison. Simulated error case studies were used to demonstrate the system sensitivity and performance.Results: The accuracy of the synchronization method was shown to agree within two control points which corresponds to approximately ∼1% of the total MU to be delivered for dynamic IMRT. The system achieved mean real-time gamma results for frame-by-frame analysis of 86.6% and 89.0% for 3%, 3 mm and 4%, 4 mm criteria, respectively, and 97.9% and 98.6% for cumulative gamma analysis. The system can detect a 10% MU error using 3%, 3 mm criteria within approximately 10 s. The EPID-based real-time delivery verification system successfully detected simulated gross errors introduced into patient plan deliveries in near real-time (within 0.1 s).Conclusions: A real-time radiation delivery verification system for dynamic IMRT has been demonstrated that is designed to prevent major mistreatments in modern radiation therapy.« less
  • Purpose: High Dose Rate (HDR) brachytherapy treatments are employed worldwide to treat a wide variety of cancers. However, in vivo dose verification remains a challenge with no commercial dosimetry system available to verify the treatment dose delivered to the patient. We propose a novel dosimetry system that couples an independent Monte Carlo (MC) simulation platform and an amorphous silicon Electronic Portal Imaging Device (EPID) to provide real time treatment verification. Methods: MC calculations predict the EPID response to the photon fluence emitted by the HDR source by simulating the patient, the source dwell positions and times, and treatment complexities suchmore » as tissue compositions/densities and different applicators. Simulated results are then compared against EPID measurements acquired with ∼0.14s time resolution which allows dose measurements for each dwell position. The EPID has been calibrated using an Ir-192 HDR source and experiments were performed using different phantoms, including tissue equivalent materials (PMMA, lung and bone). A source positioning accuracy of 0.2 mm, without including the afterloader uncertainty, was ensured using a robotic arm moving the source. Results: An EPID can acquire 3D Cartesian source positions and its response varies significantly due to differences in the material composition/density of the irradiated object, allowing detection of changes in patient geometry. The panel time resolution allows dose rate and dwell time measurements. Moreover, predicted EPID images obtained from clinical treatment plans provide anatomical information that can be related to the patient anatomy, mostly bone and air cavities, localizing the source inside of the patient using its anatomy as reference. Conclusion: Results obtained show the feasibility of the proposed dose verification system that is capable to verify all the brachytherapy treatment steps in real time providing data about treatment delivery quality and also applicator/structure motion during or between treatments.« less
  • Purpose: Gantry-mounted megavoltage electronic portal imaging devices (EPIDs) have become ubiquitous on linear accelerators. WatchDog is a novel application of EPIDs, in which the image frames acquired during treatment are used to monitor treatment delivery in real time. We report on the preliminary use of WatchDog in a prospective study of cancer patients undergoing intensity modulated radiation therapy (IMRT) and volumetric modulated arc therapy (VMAT) and identify the challenges of clinical adoption. Methods and Materials: At the time of submission, 28 cancer patients (head and neck, pelvis, and prostate) undergoing fractionated external beam radiation therapy (24 IMRT, 4 VMAT) hadmore » ≥1 treatment fraction verified in real time (131 fractions or 881 fields). EPID images acquired continuously during treatment were synchronized and compared with model-generated transit EPID images within a frame time (∼0.1 s). A χ comparison was performed to cumulative frames to gauge the overall delivery quality, and the resulting pass rates were reported graphically during treatment delivery. Every frame acquired (500-1500 per fraction) was saved for postprocessing and analysis. Results: The system reported the mean ± standard deviation in real time χ 91.1% ± 11.5% (83.6% ± 13.2%) for cumulative frame χ analysis with 4%, 4 mm (3%, 3 mm) criteria, global over the integrated image. Conclusions: A real-time EPID-based radiation delivery verification system for IMRT and VMAT has been demonstrated that aims to prevent major mistreatments in radiation therapy.« less
  • Purpose: Traditional external beam radiotherapy for cervical cancer requires setup by external skin marks. In order to improve treatment accuracy and reduce planning margin for more conformal therapy, it is essential to monitor tumor positions interfractionally and intrafractionally. We demonstrate feasibility of monitoring cervical tumor motion online using EPID imaging from Beam’s Eye View. Methods: Prior to treatment, 1∼2 cylindrical radio opaque markers were implanted into inferior aspect of cervix tumor. During external beam treatments on a Varian 2100C by 4-field 3D plans, treatment beam images were acquired continuously by an EPID. A Matlab program was developed to locate internalmore » markers on MV images. Based on 2D marker positions obtained from different treatment fields, their 3D positions were estimated for every treatment fraction. Results: There were 398 images acquired during different treatment fractions of three cervical cancer patients. Markers were successfully located on every frame of image at an analysis speed of about 1 second per frame. Intrafraction motions were evaluated by comparing marker positions relative to the position on the first frame of image. The maximum intrafraction motion of the markers was 1.6 mm. Interfraction motions were evaluated by comparing 3D marker positions at different treatment fractions. The maximum interfraction motion was up to 10 mm. Careful comparison found that this is due to patient positioning since the bony structures shifted with the markers. Conclusion: This method provides a cost-free and simple solution for online tumor tracking for cervical cancer treatment since it is feasible to acquire and export EPID images with fast analysis in real time. This method does not need any extra equipment or deliver extra dose to patients. The online tumor motion information will be very useful to reduce planning margins and improve treatment accuracy, which is particularly important for SBRT treatment with long delivery time.« less
  • Treatment verification is a prerequisite for the verification of complex treatments, checking both the treatment planning process and the actual beam delivery. Pretreatment verification can detect errors introduced by the treatment planning system (TPS) or differences between planned and delivered dose distributions. In a previous paper we described the reconstruction of three-dimensional (3-D) dose distributions in homogeneous phantoms using an in-house developed model based on the beams delivered by the linear accelerator measured with an amorphous silicon electronic portal imaging device (EPID), and a dose calculation engine using the Monte Carlo code XVMC. The aim of the present study ismore » to extend the method to situations in which tissue inhomogeneities are present and to make a comparison with the dose distributions calculated by the TPS. Dose distributions in inhomogeneous phantoms, calculated using the fast-Fourier transform convolution (FFTC) and multigrid superposition (MGS) algorithms present in the TPS, were verified using the EPID-based dose reconstruction method and compared to film and ionization chamber measurements. Differences between dose distributions were evaluated using the {gamma}-evaluation method (3%/3 mm) and expressed as a mean {gamma} and the percentage of points with {gamma}>1 (P{sub {gamma}}{sub >1}). For rectangular inhomogeneous phantoms containing a low-density region, the differences between film and reconstructed dose distributions were smaller than 3%. In low-density regions there was an overestimation of the planned dose using the FFTC and MGS algorithms of the TPS up to 20% and 8%, respectively, for a 10 MV photon beam and a 3x3 cm{sup 2} field. For lower energies and larger fields (6 MV, 5x5 cm{sup 2}), these differences reduced to 6% and 3%, respectively. Dose reconstruction performed in an anthropomorphic thoracic phantom for a 3-D conformal and an IMRT plan, showed good agreement between film data and reconstructed dose values (P{sub {gamma}}{sub >1}<6%). The algorithms of the TPS underestimated the dose in the low-dose regions outside the treatment field, due to an implementation error of the jaws and multileaf collimator of the linac in the TPS. The FFTC algorithm of the TPS showed differences up to 6% or 6 mm at the interface between lung and breast. Two intensity-modulated radiation therapy head and neck plans, reconstructed in a commercial phantom having a bone-equivalent insert and an air cavity, showed good agreement between film measurement, reconstructed and planned dose distributions using the FFTC and MGS algorithm, except in the bone-equivalent regions where both TPS algorithms underestimated the dose with 4%. Absolute dose verification was performed at the isocenter where both planned and reconstructed dose were within 2% of the measured dose. Reproducibility for the EPID measurements was assessed and found to be of negligible influence on the reconstructed dose distribution. Our 3-D dose verification approach is based on the actual dose measured with an EPID in combination with a Monte Carlo dose engine, and therefore independent of a TPS. Because dose values are reconstructed in 3-D, isodose surfaces and dose-volume histograms can be used to detect dose differences in target volume and normal tissues. Using our method, the combined planning and treatment delivery process is verified, offering an easy to use tool for the verification of complex treatments.« less