skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MO-FG-BRA-09: Towards an Optimal Breath-Holding Procedure for Radiotherapy: Differences in Organ Motion During Inhalation and Exhalation Breath-Holds

Abstract

Purpose: Breath-holding (BH) is often used to reduce organ motion during radiotherapy. The aim of this study was to determine the differences in pancreatic and diaphragmatic motion during BH between inhalation and exhalation BHs with variable lung volumes and to investigate whether motion increases/decreases during BH. Methods: Sixteen healthy volunteers were asked to perform four different 60-second BHs, from fully inflated to fully deflated lungs (i.e. lung volumes of: 100%, ∼70%, ∼30% and 0% of inspiratory capacity) three times (total of 192 BHs). During each BH, we obtained single-slice (coronal) magnetic-resonance scans with spatial resolution 0.93×0.93×8.0 mm3 and temporal resolution 0.6 s. We used 2-dimensional image correlation to obtain the motion of pancreatic head and diaphragm during BH. Motion magnitude in inferior-superior direction was obtained by determining the maximum displacement during BH. Results: Pancreatic and diaphragmatic drifts occurred during BH and were mostly in the superior direction. We observed significantly smaller pancreatic and diaphragmatic motion magnitudes in inferior-superior direction during exhalation BHs (BH{sub 30%} and BH{sub 0%}) compared to inhalation BHs (BH{sub 100%} and BH{sub 70%}). The mean motion magnitudes of the pancreatic head were 7.0, 6.5, 4.4 and 4.2 mm during BH{sub 100%}, BH{sub 70%}, BH{sub 30%} and BH{submore » 0%}, respectively, and mean BH durations were 59.9, 59.1, 59.0 and 52.7 s. For the diaphragm, mean motion magnitudes were 9.8, 9.0, 5.6 and 4.3 mm, respectively. When considering 30-second BHs, as often used in the clinic, the motion was most pronounced during the first 10 s and excluding these from the analysis (yielding an effective BH period of 20 s) significantly reduced (P≤0.002) organ motion. Conclusion: Organ motion was significantly smaller during exhalation BHs compared to inhalation BHs. Also, motion was largest at the start of BH. Hence, waiting for 10 s may significantly decrease motion of the pancreas and diaphragm during treatment.« less

Authors:
; ; ; ; ; ; ;  [1];  [2]
  1. Academic Medical Center, Amsterdam, Noord-Holland (Netherlands)
  2. University of Birmingham, Birmingham, West Midlands (United Kingdom)
Publication Date:
OSTI Identifier:
22653872
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BREATH; DIAPHRAGM; EXHALATION; INHALATION; LUNGS; PANCREAS; RADIOTHERAPY; SPATIAL RESOLUTION

Citation Formats

Lens, E, Gurney-Champion, O, Horst, A van der, Tekelenburg, D, Kesteren, Z van, Tienhoven, G van, Nederveen, A, Bel, A, and Parkes, M. MO-FG-BRA-09: Towards an Optimal Breath-Holding Procedure for Radiotherapy: Differences in Organ Motion During Inhalation and Exhalation Breath-Holds. United States: N. p., 2016. Web. doi:10.1118/1.4957302.
Lens, E, Gurney-Champion, O, Horst, A van der, Tekelenburg, D, Kesteren, Z van, Tienhoven, G van, Nederveen, A, Bel, A, & Parkes, M. MO-FG-BRA-09: Towards an Optimal Breath-Holding Procedure for Radiotherapy: Differences in Organ Motion During Inhalation and Exhalation Breath-Holds. United States. doi:10.1118/1.4957302.
Lens, E, Gurney-Champion, O, Horst, A van der, Tekelenburg, D, Kesteren, Z van, Tienhoven, G van, Nederveen, A, Bel, A, and Parkes, M. Wed . "MO-FG-BRA-09: Towards an Optimal Breath-Holding Procedure for Radiotherapy: Differences in Organ Motion During Inhalation and Exhalation Breath-Holds". United States. doi:10.1118/1.4957302.
@article{osti_22653872,
title = {MO-FG-BRA-09: Towards an Optimal Breath-Holding Procedure for Radiotherapy: Differences in Organ Motion During Inhalation and Exhalation Breath-Holds},
author = {Lens, E and Gurney-Champion, O and Horst, A van der and Tekelenburg, D and Kesteren, Z van and Tienhoven, G van and Nederveen, A and Bel, A and Parkes, M},
abstractNote = {Purpose: Breath-holding (BH) is often used to reduce organ motion during radiotherapy. The aim of this study was to determine the differences in pancreatic and diaphragmatic motion during BH between inhalation and exhalation BHs with variable lung volumes and to investigate whether motion increases/decreases during BH. Methods: Sixteen healthy volunteers were asked to perform four different 60-second BHs, from fully inflated to fully deflated lungs (i.e. lung volumes of: 100%, ∼70%, ∼30% and 0% of inspiratory capacity) three times (total of 192 BHs). During each BH, we obtained single-slice (coronal) magnetic-resonance scans with spatial resolution 0.93×0.93×8.0 mm3 and temporal resolution 0.6 s. We used 2-dimensional image correlation to obtain the motion of pancreatic head and diaphragm during BH. Motion magnitude in inferior-superior direction was obtained by determining the maximum displacement during BH. Results: Pancreatic and diaphragmatic drifts occurred during BH and were mostly in the superior direction. We observed significantly smaller pancreatic and diaphragmatic motion magnitudes in inferior-superior direction during exhalation BHs (BH{sub 30%} and BH{sub 0%}) compared to inhalation BHs (BH{sub 100%} and BH{sub 70%}). The mean motion magnitudes of the pancreatic head were 7.0, 6.5, 4.4 and 4.2 mm during BH{sub 100%}, BH{sub 70%}, BH{sub 30%} and BH{sub 0%}, respectively, and mean BH durations were 59.9, 59.1, 59.0 and 52.7 s. For the diaphragm, mean motion magnitudes were 9.8, 9.0, 5.6 and 4.3 mm, respectively. When considering 30-second BHs, as often used in the clinic, the motion was most pronounced during the first 10 s and excluding these from the analysis (yielding an effective BH period of 20 s) significantly reduced (P≤0.002) organ motion. Conclusion: Organ motion was significantly smaller during exhalation BHs compared to inhalation BHs. Also, motion was largest at the start of BH. Hence, waiting for 10 s may significantly decrease motion of the pancreas and diaphragm during treatment.},
doi = {10.1118/1.4957302},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}