skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MO-FG-BRA-07: Intrafractional Motion Effect Can Be Minimized in Tomotherapy Stereotactic Body Radiotherapy (SBRT)

Abstract

Purpose: Tomotherapy has unique challenges in handling intrafractional motion compared to conventional LINAC. In this study, we analyzed the impact of intrafractional motion on cumulative dosimetry using actual patient motion data and investigated real time jaw/MLC compensation approaches to minimize the motion-induced dose discrepancy in Tomotherapy SBRT treatment. Methods: Intrafractional motion data recorded in two CyberKnife lung treatment cases through fiducial tracking and two LINAC prostate cases through Calypso tracking were used in this study. For each treatment site, one representative case has an average motion (6mm) and one has a large motion (10mm for lung and 15mm for prostate). The cases were re-planned on Tomotherapy for SBRT. Each case was planned with 3 different jaw settings: 1cm static, 2.5cm dynamic, and 5cm dynamic. 4D dose accumulation software was developed to compute dose with the recorded motions and theoretically compensate motions by modifying original jaw and MLC to track the trajectory of the tumor. Results: PTV coverage in Tomotherapy SBRT for patients with intrafractional motion depends on motion type, amplitude and plan settings. For the prostate patient with large motion, PTV coverage changed from 97.2% (motion-free) to 47.1% (target motion-included), 96.6% to 58.5% and 96.3% to 97.8% for the 1cmmore » static jaw, 2.5cm dynamic jaw and 5cm dynamic jaw setting, respectively. For the lung patient with large motion, PTV coverage discrepancies showed a similar trend of change. When the jaw and MLC compensation program was engaged, the motion compromised PTV coverage was recovered back to >95% for all cases and plans. All organs at risk (OAR) were spared with < 5% increase from original motion-free plans. Conclusion: Tomotherapy SBRT is less motion-impacted when 5cm dynamic jaw is used. Once the motion pattern is known, the jaw and MLC compensation program can largely minimize the compromised target coverage and OAR sparing.« less

Authors:
; ; ; ;  [1];  [2]
  1. University of North Carolina, Chapel Hill, NC (United States)
  2. Accuray Incorporated, Madison, WI (United States)
Publication Date:
OSTI Identifier:
22653870
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; COMPUTER CODES; COMPUTERIZED TOMOGRAPHY; CT-GUIDED RADIOTHERAPY; LINEAR ACCELERATORS; LUNGS; PARTICLE TRACKS; PATIENTS; PROSTATE; RADIATION DOSES

Citation Formats

Price, A, Chang, S, Matney, J, Wang, A, Lian, J, and Chao, E. MO-FG-BRA-07: Intrafractional Motion Effect Can Be Minimized in Tomotherapy Stereotactic Body Radiotherapy (SBRT). United States: N. p., 2016. Web. doi:10.1118/1.4957300.
Price, A, Chang, S, Matney, J, Wang, A, Lian, J, & Chao, E. MO-FG-BRA-07: Intrafractional Motion Effect Can Be Minimized in Tomotherapy Stereotactic Body Radiotherapy (SBRT). United States. doi:10.1118/1.4957300.
Price, A, Chang, S, Matney, J, Wang, A, Lian, J, and Chao, E. Wed . "MO-FG-BRA-07: Intrafractional Motion Effect Can Be Minimized in Tomotherapy Stereotactic Body Radiotherapy (SBRT)". United States. doi:10.1118/1.4957300.
@article{osti_22653870,
title = {MO-FG-BRA-07: Intrafractional Motion Effect Can Be Minimized in Tomotherapy Stereotactic Body Radiotherapy (SBRT)},
author = {Price, A and Chang, S and Matney, J and Wang, A and Lian, J and Chao, E},
abstractNote = {Purpose: Tomotherapy has unique challenges in handling intrafractional motion compared to conventional LINAC. In this study, we analyzed the impact of intrafractional motion on cumulative dosimetry using actual patient motion data and investigated real time jaw/MLC compensation approaches to minimize the motion-induced dose discrepancy in Tomotherapy SBRT treatment. Methods: Intrafractional motion data recorded in two CyberKnife lung treatment cases through fiducial tracking and two LINAC prostate cases through Calypso tracking were used in this study. For each treatment site, one representative case has an average motion (6mm) and one has a large motion (10mm for lung and 15mm for prostate). The cases were re-planned on Tomotherapy for SBRT. Each case was planned with 3 different jaw settings: 1cm static, 2.5cm dynamic, and 5cm dynamic. 4D dose accumulation software was developed to compute dose with the recorded motions and theoretically compensate motions by modifying original jaw and MLC to track the trajectory of the tumor. Results: PTV coverage in Tomotherapy SBRT for patients with intrafractional motion depends on motion type, amplitude and plan settings. For the prostate patient with large motion, PTV coverage changed from 97.2% (motion-free) to 47.1% (target motion-included), 96.6% to 58.5% and 96.3% to 97.8% for the 1cm static jaw, 2.5cm dynamic jaw and 5cm dynamic jaw setting, respectively. For the lung patient with large motion, PTV coverage discrepancies showed a similar trend of change. When the jaw and MLC compensation program was engaged, the motion compromised PTV coverage was recovered back to >95% for all cases and plans. All organs at risk (OAR) were spared with < 5% increase from original motion-free plans. Conclusion: Tomotherapy SBRT is less motion-impacted when 5cm dynamic jaw is used. Once the motion pattern is known, the jaw and MLC compensation program can largely minimize the compromised target coverage and OAR sparing.},
doi = {10.1118/1.4957300},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: TomoTherapy treatment has unique challenges in handling intrafractional motion compared to conventional LINAC. This study is aimed to gain a realistic and quantitative understanding of motion impact on TomoTherapy SBRT treatment of lung and prostate cancer patients. Methods: A 4D dose engine utilizing GPUs and including motion during treatment was developed for the efficient simulation of TomoTherapy delivered dosimetry. Two clinical CyberKnife lung cases with respiratory motion tracking and two prostate cases with a slower non-periodical organ motion treated by LINAC plus Calypso tracking were used in the study. For each disease site, one selected case has an averagemore » motion (6mm); the other has a large motion (10mm for lung and 15mm for prostate). SBRT of lung and prostate cases were re-planned on TomoTherapy with 12 Gyx4 fractions and 7Gyx5 fractions, respectively, all with 95% PTV coverage. Each case was planned with 4 jaw settings: 1) conventional 1cm static, 2) 2.5cm static, 3) 2.5cm dynamic, and 4) 5cm dynamic. The intrafractional rigid motion of the target was applied in the dose calculation of individual fractions of each plan and total dose was accumulated from multiple fractions. Results: For 1cm static jaw plans with motions applied, PTV coverage is related to motion type and amplitude. For SBRT patients with average motion (6mm), the PTV coverage remains > 95% for lung case and 74% for prostate case. For cases with large motion, PTV coverage drops to 61% for lung SBRT and 49% for prostate SBRT. Plans with other jaws improve uniformity of moving target, but still suffer from poor PTV coverage (< 70%). Conclusion: TomoTherapy lung SBRT is less motion-impacted when average amplitude of respiratory-induced intrafractional motion is present (6mm). When motion is large and/or non-periodic (prostate), all studied plans lead to significantly decreased target coverage in actual delivered dosimetry.« less
  • Purpose: To study the variability of patient-specific motion models derived from 4-dimensional CT (4DCT) images using different deformable image registration (DIR) algorithms for lung cancer stereotactic body radiotherapy (SBRT) patients. Methods: Motion models are derived by 1) applying DIR between each 4DCT image and a reference image, resulting in a set of displacement vector fields (DVFs), and 2) performing principal component analysis (PCA) on the DVFs, resulting in a motion model (a set of eigenvectors capturing the variations in the DVFs). Three DIR algorithms were used: 1) Demons, 2) Horn-Schunck, and 3) iterative optical flow. The motion models derived weremore » compared using patient 4DCT scans. Results: Motion models were derived and the variations were evaluated according to three criteria: 1) the average root mean square (RMS) difference which measures the absolute difference between the components of the eigenvectors, 2) the dot product between the eigenvectors which measures the angular difference between the eigenvectors in space, and 3) the Euclidean Model Norm (EMN), which is calculated by summing the dot products of an eigenvector with the first three eigenvectors from the reference motion model in quadrature. EMN measures how well an eigenvector can be reconstructed using another motion model derived using a different DIR algorithm. Results showed that comparing to a reference motion model (derived using the Demons algorithm), the eigenvectors of the motion model derived using the iterative optical flow algorithm has smaller RMS, larger dot product, and larger EMN values than those of the motion model derived using Horn-Schunck algorithm. Conclusion: The study showed that motion models vary depending on which DIR algorithms were used to derive them. The choice of a DIR algorithm may affect the accuracy of the resulting model, and it is important to assess the suitability of the algorithm chosen for a particular application. This project was supported, in part, through a Master Research Agreement with Varian Medical Systems, Inc, Palo Alto, CA.« less
  • Purpose: Liver SBRT patients unable to tolerate breath-hold for radiotherapy are treated free-breathing with image guidance. Target localization using 3D CBCT requires extra margins to accommodate the respiratory motion. The purpose of this study is to evaluate the accuracy and reproducibility of 4D CT-on-rails in target localization for free-breathing liver SBRT. Methods: A Siemens SOMATOM CT-on-Rails 4D with Anzai Pressure Belt system was used both as the simulation and the localization CT. Fiducial marker was placed close to the center of the target prior to the simulation. Amplitude based sorting was used in the scan. Eight or sixteen phases ofmore » reconstructed CT sets (depends on breathing pattern) can be sent to Velocity to create the maximum intensity projection (MIP) image set. Target ITV and fiducial ITV were drawn based on the MIP image. In patient localization, a 4D scan was taken with the same settings as the sim scan. Images were registered to match fiducial ITVs. Results: Ten liver cancer patients treated for 50Gy over 5 fractions, with amplitudes of breathing motion ranging from 4.3–14.5 mm, were analyzed in this study. Results show that the Intra & inter fraction variability in liver motion amplitude significantly less than the baseline inter-fraction shifts in liver position. 90% of amplitude change is less than 3 mm. The differences in the D99 and D95 GTV dose coverage between the 4D CT-on-Rails and the CBCT plan were small (within 5%) for all the selected cases. However, the average PTV volume by using the 4D CT-on-Rails is 37% less than the CBCT PTV volume. Conclusion: Simulation and Registration using 4D CT-on-Rails provides accurate target localization and is unaffected by larger breathing amplitudes as seen with 3D CBCT image registration. Localization with 4D CT-on-Rails can significantly reduce the PTV volume with sufficient tumor.« less
  • Purpose: Conventional treatment plans for lung radiotherapy are created using either the free breathing (FB) scheme which represents the tumor at an arbitrary breathing phase of the patient’s respiratory cycle, or the average computed tomography (ACT) intensity projection over 10-binned phases. Neither method is entirely accurate because of the absence of time dependence of tumor movement. In the present “Hybrid” method, the HU of tumor in 3D space is determined by relative weighting of the HU of the tumor and lung in proportion to the time they spend at that location during the entire breathing cycle. Methods: A Quasar respiratorymore » motion phantom was employed to simulate lung tumor movement. Utilizing 4DCT image scans, volumetric modulated arc therapy (VMAT) plans were generated for three treatment planning scenarios which included conventional FB and ACT schemes, along with a third alternative Hybrid approach. Our internal target volume (ITV) hybrid structure was created using Boolean operation in Eclipse (ver. 11) treatment planning system, where independent sub-regions created by the gross tumor volume (GTV) overlap from the 10 motion phases were each assigned a time weighted CT value. The dose-volume-histograms (DVH) for each scheme were compared and analyzed. Results: Using our hybrid technique, we have demonstrated a reduction of 1.9% – 3.4% in total monitor units with respect to conventional treatment planning strategies, along with a 6 fold improvement in high dose spillage over the FB plan. The higher density ACT and Hybrid schemes also produced a slight enhancement in target conformity and reduction in low dose spillage. Conclusion: All treatment plans created in this study exceeded RTOG protocol criteria. Our results determine the free breathing approach yields an inaccurate account of the target treatment density. A significant decrease in unnecessary lung irradiation can be achieved by implementing Hybrid HU method with ACT method second best.« less
  • Purpose: To review treatment outcomes for stereotactic body radiotherapy (SBRT) in medically operable patients with Stage I non-small-cell lung cancer (NSCLC), using a Japanese multi-institutional database. Patients and Methods: Between 1995 and 2004, a total of 87 patients with Stage I NSCLC (median age, 74 years; T1N0M0, n = 65; T2N0M0, n = 22) who were medically operable but refused surgery were treated using SBRT alone in 14 institutions. Stereotactic three-dimensional treatment was performed using noncoplanar dynamic arcs or multiple static ports. Total dose was 45-72.5 Gy at the isocenter, administered in 3-10 fractions. Median calculated biological effective dose wasmore » 116 Gy (range, 100-141 Gy). Data were collected and analyzed retrospectively. Results: During follow-up (median, 55 months), cumulative local control rates for T1 and T2 tumors at 5 years after SBRT were 92% and 73%, respectively. Pulmonary complications above Grade 2 arose in 1 patient (1.1%). Five-year overall survival rates for Stage IA and IB subgroups were 72% and 62%, respectively. One patient who developed local recurrences safely underwent salvage surgery. Conclusion: Stereotactic body radiotherapy is safe and promising as a radical treatment for operable Stage I NSCLC. The survival rate for SBRT is potentially comparable to that for surgery.« less