skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Role of Stereotactic Body Radiation Therapy Before Orthotopic Liver Transplantation: Retrospective Evaluation of Pathologic Response and Outcomes

Abstract

Purpose: To analyze the results of stereotactic body radiation therapy (SBRT) in patients with early-stage, localized hepatocellular carcinoma who underwent definitive orthotopic liver transplantation (OLT). Methods and Materials: The subjects of this retrospective report are 38 patients diagnosed with hepatocellular carcinoma who underwent SBRT per institutional phase 1 to 2 eligibility criteria, before definitive OLT. Pre-OLT radiographs were compared with pathologic gold standard. Analysis of treatment failures and deaths was undertaken. Results: With median follow-up of 4.8 years from OLT, 9 of 38 patients (24%) recurred, whereas 10 of 38 patients (26%) died. Kaplan-Meier estimates of 3-year overall survival and disease-free survival are 77% and 74%, respectively. Sum longest dimension of tumors was significantly associated with disease-free survival (hazard ratio 1.93, P=.026). Pathologic response rate (complete plus partial response) was 68%. Radiographic scoring criteria performed poorly; modified Response Evaluation Criteria in Solid Tumors produced highest concordance (κ = 0.224). Explants revealed viable tumor in 74% of evaluable patients. Treatment failures had statistically larger sum longest dimension of tumors (4.0 cm vs 2.8 cm, P=.014) and non–statistically significant higher rates of lymphovascular space invasion (44% vs 17%), cT2 disease (44% vs 21%), ≥pT2 disease (67% vs 34%), multifocal tumors at time of SBRT (44% vs 21%), andmore » less robust mean α-fetoprotein response (−25 IU/mL vs −162 IU/mL). Conclusions: Stereotactic body radiation therapy before to OLT is a well-tolerated treatment providing 68% pathologic response, though 74% of explants ultimately contained viable tumor. Radiographic response criteria poorly approximate pathology. Our data suggest further stratification of patients according to initial disease burden and treatment response.« less

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [7];  [8];  [9];  [10]
  1. Department of Radiation Oncology, Slidell Memorial Hospital Regional Cancer Center, Slidell, Louisiana (United States)
  2. Department of Radiation Oncology, Schneck Medical Center, Seymour, Indiana (United States)
  3. Department of Radiation Oncology, Mercy Hospital, Oklahoma City, Oklahoma (United States)
  4. Department of Radiation Oncology, St. Francis Healthcare, Cape Girardeau, Missouri (United States)
  5. Department of Radiation Oncology, Community Hospital Anderson, Anderson, Indiana (United States)
  6. Department of Biostatistics, Indiana University School of Medicine, Indianapolis, Indiana (United States)
  7. Department of Radiation Oncology, Columbus Regional, Columbus, Indiana (United States)
  8. Department of Pathology, Indiana University School of Medicine, Indianapolis, Indiana (United States)
  9. Department of Surgery, University of Alabama-Birmingham, Birmingham, Alabama (United States)
  10. Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana (United States)
Publication Date:
OSTI Identifier:
22649882
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 97; Journal Issue: 5; Other Information: Copyright (c) 2017 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; BIOMEDICAL RADIOGRAPHY; IMAGES; LIVER; NEOPLASMS; PATHOLOGY; PATIENTS; RADIOTHERAPY

Citation Formats

Mannina, Edward Michael, E-mail: emmannina@gmail.com, Cardenes, Higinia Rosa, Lasley, Foster D., Goodman, Benjamin, Zook, Jennifer, Althouse, Sandra, Cox, John Alvin, Saxena, Romil, Tector, Joseph, and Maluccio, Mary. Role of Stereotactic Body Radiation Therapy Before Orthotopic Liver Transplantation: Retrospective Evaluation of Pathologic Response and Outcomes. United States: N. p., 2017. Web. doi:10.1016/J.IJROBP.2016.12.036.
Mannina, Edward Michael, E-mail: emmannina@gmail.com, Cardenes, Higinia Rosa, Lasley, Foster D., Goodman, Benjamin, Zook, Jennifer, Althouse, Sandra, Cox, John Alvin, Saxena, Romil, Tector, Joseph, & Maluccio, Mary. Role of Stereotactic Body Radiation Therapy Before Orthotopic Liver Transplantation: Retrospective Evaluation of Pathologic Response and Outcomes. United States. doi:10.1016/J.IJROBP.2016.12.036.
Mannina, Edward Michael, E-mail: emmannina@gmail.com, Cardenes, Higinia Rosa, Lasley, Foster D., Goodman, Benjamin, Zook, Jennifer, Althouse, Sandra, Cox, John Alvin, Saxena, Romil, Tector, Joseph, and Maluccio, Mary. Sat . "Role of Stereotactic Body Radiation Therapy Before Orthotopic Liver Transplantation: Retrospective Evaluation of Pathologic Response and Outcomes". United States. doi:10.1016/J.IJROBP.2016.12.036.
@article{osti_22649882,
title = {Role of Stereotactic Body Radiation Therapy Before Orthotopic Liver Transplantation: Retrospective Evaluation of Pathologic Response and Outcomes},
author = {Mannina, Edward Michael, E-mail: emmannina@gmail.com and Cardenes, Higinia Rosa and Lasley, Foster D. and Goodman, Benjamin and Zook, Jennifer and Althouse, Sandra and Cox, John Alvin and Saxena, Romil and Tector, Joseph and Maluccio, Mary},
abstractNote = {Purpose: To analyze the results of stereotactic body radiation therapy (SBRT) in patients with early-stage, localized hepatocellular carcinoma who underwent definitive orthotopic liver transplantation (OLT). Methods and Materials: The subjects of this retrospective report are 38 patients diagnosed with hepatocellular carcinoma who underwent SBRT per institutional phase 1 to 2 eligibility criteria, before definitive OLT. Pre-OLT radiographs were compared with pathologic gold standard. Analysis of treatment failures and deaths was undertaken. Results: With median follow-up of 4.8 years from OLT, 9 of 38 patients (24%) recurred, whereas 10 of 38 patients (26%) died. Kaplan-Meier estimates of 3-year overall survival and disease-free survival are 77% and 74%, respectively. Sum longest dimension of tumors was significantly associated with disease-free survival (hazard ratio 1.93, P=.026). Pathologic response rate (complete plus partial response) was 68%. Radiographic scoring criteria performed poorly; modified Response Evaluation Criteria in Solid Tumors produced highest concordance (κ = 0.224). Explants revealed viable tumor in 74% of evaluable patients. Treatment failures had statistically larger sum longest dimension of tumors (4.0 cm vs 2.8 cm, P=.014) and non–statistically significant higher rates of lymphovascular space invasion (44% vs 17%), cT2 disease (44% vs 21%), ≥pT2 disease (67% vs 34%), multifocal tumors at time of SBRT (44% vs 21%), and less robust mean α-fetoprotein response (−25 IU/mL vs −162 IU/mL). Conclusions: Stereotactic body radiation therapy before to OLT is a well-tolerated treatment providing 68% pathologic response, though 74% of explants ultimately contained viable tumor. Radiographic response criteria poorly approximate pathology. Our data suggest further stratification of patients according to initial disease burden and treatment response.},
doi = {10.1016/J.IJROBP.2016.12.036},
journal = {International Journal of Radiation Oncology, Biology and Physics},
number = 5,
volume = 97,
place = {United States},
year = {Sat Apr 01 00:00:00 EDT 2017},
month = {Sat Apr 01 00:00:00 EDT 2017}
}
  • Purpose/Objectives: Evidence from the management of oligometastases with stereotactic body radiation therapy (SBRT) reveals differences in outcomes based on primary histology. We have previously identified a multigene expression index for tumor radiosensitivity (RSI) with validation in multiple independent cohorts. In this study, we assessed RSI in liver metastases and assessed our clinical outcomes after SBRT based on primary histology. Methods and Materials: Patients were identified from our prospective, observational protocol. The previously tested RSI 10 gene assay was run on samples and calculated using the published algorithm. An independent cohort of 33 patients with 38 liver metastases treated with SBRTmore » was used for clinical correlation. Results: A total of 372 unique metastatic liver lesions were identified for inclusion from our prospective, institutional metadata pool. The most common primary histologies for liver metastases were colorectal adenocarcinoma (n=314, 84.4%), breast adenocarcinoma (n=12, 3.2%), and pancreas neuroendocrine (n=11, 3%). There were significant differences in RSI of liver metastases based on histology. The median RSIs for liver metastases in descending order of radioresistance were gastrointestinal stromal tumor (0.57), melanoma (0.53), colorectal neuroendocrine (0.46), pancreas neuroendocrine (0.44), colorectal adenocarcinoma (0.43), breast adenocarcinoma (0.35), lung adenocarcinoma (0.31), pancreas adenocarcinoma (0.27), anal squamous cell cancer (0.22), and small intestine neuroendocrine (0.21) (P<.0001). The 12-month and 24-month Kaplan-Meier rates of local control (LC) for colorectal lesions from the independent clinical cohort were 79% and 59%, compared with 100% for noncolorectal lesions (P=.019), respectively. Conclusions: In this analysis, we found significant differences based on primary histology. This study suggests that primary histology may be an important factor to consider in SBRT radiation dose selection.« less
  • Purpose: To evaluate the temporal dose response of normal liver tissue for patients with liver metastases treated with stereotactic body radiation therapy (SBRT). Methods and Materials: Ninety-nine noncontrast follow-up computed tomography (CT) scans of 34 patients who received SBRT between 2004 and 2011 were retrospectively analyzed at a median of 8 months post-SBRT (range, 0.7-36 months). SBRT-induced normal liver tissue density changes in follow-up CT scans were evaluated at 2, 6, 10, 15, and 27 months. The dose distributions from planning CTs were mapped to follow-up CTs to relate the mean Hounsfield unit change ({Delta}HU) to dose received over themore » range 0-55 Gy in 3-5 fractions. An absolute density change of 7 HU was considered a significant radiographic change in normal liver tissue. Results: Increasing radiation dose was linearly correlated with lower post-SBRT liver tissue density (slope, -0.65 {Delta}HU/5 Gy). The threshold for significant change (-7 {Delta}HU) was observed in the range of 30-35 Gy. This effect did not vary significantly over the time intervals evaluated. Conclusions: SBRT induces a dose-dependent and relatively time-independent hypodense radiation reaction within normal liver tissue that is characterized by a decrease of >7 HU in liver density for doses >30-35 Gy.« less
  • Purpose: Focal liver reaction (FLR) appears on radiographic images after stereotactic ablative body radiation therapy (SABR) in patients with hepatocellular carcinoma (HCC) and chronic liver disease. We investigated the threshold dose (TD) of FLR and possible factors affecting the TD on gadoxetate acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI). Methods and Materials: In 50 patients who were treated with SABR for small HCC and followed up by MRI for >6 months, FLR, seen as a hypointense area, was evaluated on the hepatobiliary phase of Gd-EOB-DTPA-enhanced MRI. The follow-up MRI with the largest extent of FLR was fused to the planning computedmore » tomography (CT) image, and patients with good image fusion concordance were eligible. After delineating the border of the FLR manually, a dose–volume histogram was used to identify the TD for the FLR. Clinical and volumetric factors were analyzed for correlation with the TD. Results: A total of 45 patients were eligible for analysis with a median image fusion concordance of 84.9% (range, 71.6-95.4%). The median duration between SABR and subsequent hepatobiliary phase MRI with the largest extent of FLR was 3 months (range, 1-6 months). The median TD for FLR was 28.0 Gy (range, 22.3-36.4 Gy). On univariate analysis, pre-treatment Child-Pugh (CP) score and platelet count were significantly correlated with the TD. On multiple linear regression analysis, CP score was the only parameter that predicted TD. Median TDs were 30.5 Gy (range, 26.2.3-36.4 Gy) and 25.2 Gy (range, 22.3-27.5 Gy) for patients with CP-A and CP-B disease, respectively. Conclusion: The TD was significantly correlated with baseline liver function. We propose 30 Gy for CP-A disease and 25 Gy for CP-B disease in 5 fractions as TDs for FLR after SABR for patients with HCC and chronic liver disease. Use of these TDs will help to predict potential loss of liver tissue after SABR.« less
  • Purpose: We sought to determine efficacy, safety, and outcome of stereotactic hypofractionated radiation therapy (SHORT) as a suitable bridging therapy for patients awaiting liver transplantation (LT) for hepatocellular carcinoma (HCC). We also examined histological response to radiation in the resected or explanted livers. Methods and Materials: Between August 2007 and January 2009, 18 patients with 21 lesions received SHORT. A median total dose of 50 Gy was delivered in 10 fractions. Three patients underwent either chemoembolization (n = 1) or radiofrequency ablation (n = 2) prior to SHORT. Radiographic response was based on computed tomography evaluation at 3 months aftermore » SHORT. Histological response as a percentage of tumor necrosis was assessed by a quantitative morphometric method. Results: Six of 18 patients were delisted because of progression (n = 3) or other causes (n = 3). Twelve patients successfully underwent major hepatic resection (n = 1) or LT (n = 11) at a median follow-up of 6.3 months (range, 0.6-11.6 months) after completion of SHORT. No patient developed gastrointestinal toxicity Grade {>=}3 or radiation-induced liver disease. Ten patients with 11 lesions were evaluable for pathological response. Two lesions had 100% necrosis, three lesions had {>=}50% necrosis, four lesions had {<=}50% necrosis, and two lesions had no necrosis. All patients were alive after LT and/or major hepatic resection at a median follow-up of 19.6 months. Conclusions: SHORT is an effective bridging therapy for patients awaiting LT for HCC. It provides excellent in-field control with minimal side effects, helps to downsize or stabilize tumors prior to LT, and achieves good pathological response.« less
  • Purpose: To evaluate the outcome, tolerance, and toxicity of stereotactic body radiotherapy, using image-guided robotic radiation delivery, for the treatment of patients with unresectable liver metastases. Methods and Material: Patients were treated with real-time respiratory tracking between July 2007 and April 2009. Their records were retrospectively reviewed. Metastases from colorectal carcinoma and other primaries were not necessarily confined to liver. Toxicity was evaluated using National Cancer Institute Common Criteria for Adverse Events version 3.0. Results: Forty-two patients with 62 metastases were treated with two dose levels of 40 Gy in four Dose per Fraction (23) and 45 Gy in threemore » Dose per Fraction (13). Median follow-up was 14.3 months (range, 3-23 months). Actuarial local control for 1 and 2 years was 90% and 86%, respectively. At last follow-up, 41 (66%) complete responses and eight (13%) partial responses were observed. Five lesions were stable. Nine lesions (13%) were locally progressed. Overall survival was 94% at 1 year and 48% at 2 years. The most common toxicity was Grade 1 or 2 nausea. One patient experienced Grade 3 epidermitis. The dose level did not significantly contribute to the outcome, toxicity, or survival. Conclusion: Image-guided robotic stereotactic body radiation therapy is feasible, safe, and effective, with encouraging local control. It provides a strong alternative for patients who cannot undergo surgery.« less