skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Dosimetric Implications of Residual Tracking Errors During Robotic SBRT of Liver Metastases

Abstract

Purpose: Although the metric precision of robotic stereotactic body radiation therapy in the presence of breathing motion is widely known, we investigated the dosimetric implications of breathing phase–related residual tracking errors. Methods and Materials: In 24 patients (28 liver metastases) treated with the CyberKnife, we recorded the residual correlation, prediction, and rotational tracking errors from 90 fractions and binned them into 10 breathing phases. The average breathing phase errors were used to shift and rotate the clinical tumor volume (CTV) and planning target volume (PTV) for each phase to calculate a pseudo 4-dimensional error dose distribution for comparison with the original planned dose distribution. Results: The median systematic directional correlation, prediction, and absolute aggregate rotation errors were 0.3 mm (range, 0.1-1.3 mm), 0.01 mm (range, 0.00-0.05 mm), and 1.5° (range, 0.4°-2.7°), respectively. Dosimetrically, 44%, 81%, and 92% of all voxels differed by less than 1%, 3%, and 5% of the planned local dose, respectively. The median coverage reduction for the PTV was 1.1% (range in coverage difference, −7.8% to +0.8%), significantly depending on correlation (P=.026) and rotational (P=.005) error. With a 3-mm PTV margin, the median coverage change for the CTV was 0.0% (range, −1.0% to +5.4%), not significantly depending on any investigated parameter. Inmore » 42% of patients, the 3-mm margin did not fully compensate for the residual tracking errors, resulting in a CTV coverage reduction of 0.1% to 1.0%. Conclusions: For liver tumors treated with robotic stereotactic body radiation therapy, a safety margin of 3 mm is not always sufficient to cover all residual tracking errors. Dosimetrically, this translates into only small CTV coverage reductions.« less

Authors:
 [1];  [2];  [3];  [4];  [3];  [1];  [5];  [4];  [5];  [1];  [6];  [7];  [8];  [3];  [8];
  1. Department for Radiation Oncology, University Medical Center Schleswig-Holstein, Kiel (Germany)
  2. (China)
  3. Department for Radiation Oncology, University Medical Center Schleswig-Holstein, Lübeck (Germany)
  4. (Germany)
  5. Saphir Radiosurgery Center Northern Germany, Güstrow (Germany)
  6. (Denmark)
  7. Department for Radiation Oncology, University Medicine Rostock, Rostock (Germany)
  8. Institute for Robotics and Cognitive Systems, University of Lübeck, Lübeck (Germany)
Publication Date:
OSTI Identifier:
22649874
Resource Type:
Journal Article
Resource Relation:
Journal Name: International Journal of Radiation Oncology, Biology and Physics; Journal Volume: 97; Journal Issue: 4; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; ANGULAR CORRELATION; ERRORS; LIVER; NEOPLASMS; RADIATION DOSE DISTRIBUTIONS; RADIOTHERAPY; RESPIRATION; SAFETY MARGINS

Citation Formats

Chan, Mark, Tuen Mun Hospital, Hong Kong, Grehn, Melanie, Institute for Robotics and Cognitive Systems, University of Lübeck, Lübeck, Cremers, Florian, Siebert, Frank-Andre, Wurster, Stefan, Department for Radiation Oncology, University Medicine Greifswald, Greifswald, Huttenlocher, Stefan, Dunst, Jürgen, Department for Radiation Oncology, University Clinic Copenhagen, Copenhagen, Hildebrandt, Guido, Schweikard, Achim, Rades, Dirk, Ernst, Floris, and and others. Dosimetric Implications of Residual Tracking Errors During Robotic SBRT of Liver Metastases. United States: N. p., 2017. Web. doi:10.1016/J.IJROBP.2016.11.041.
Chan, Mark, Tuen Mun Hospital, Hong Kong, Grehn, Melanie, Institute for Robotics and Cognitive Systems, University of Lübeck, Lübeck, Cremers, Florian, Siebert, Frank-Andre, Wurster, Stefan, Department for Radiation Oncology, University Medicine Greifswald, Greifswald, Huttenlocher, Stefan, Dunst, Jürgen, Department for Radiation Oncology, University Clinic Copenhagen, Copenhagen, Hildebrandt, Guido, Schweikard, Achim, Rades, Dirk, Ernst, Floris, & and others. Dosimetric Implications of Residual Tracking Errors During Robotic SBRT of Liver Metastases. United States. doi:10.1016/J.IJROBP.2016.11.041.
Chan, Mark, Tuen Mun Hospital, Hong Kong, Grehn, Melanie, Institute for Robotics and Cognitive Systems, University of Lübeck, Lübeck, Cremers, Florian, Siebert, Frank-Andre, Wurster, Stefan, Department for Radiation Oncology, University Medicine Greifswald, Greifswald, Huttenlocher, Stefan, Dunst, Jürgen, Department for Radiation Oncology, University Clinic Copenhagen, Copenhagen, Hildebrandt, Guido, Schweikard, Achim, Rades, Dirk, Ernst, Floris, and and others. Wed . "Dosimetric Implications of Residual Tracking Errors During Robotic SBRT of Liver Metastases". United States. doi:10.1016/J.IJROBP.2016.11.041.
@article{osti_22649874,
title = {Dosimetric Implications of Residual Tracking Errors During Robotic SBRT of Liver Metastases},
author = {Chan, Mark and Tuen Mun Hospital, Hong Kong and Grehn, Melanie and Institute for Robotics and Cognitive Systems, University of Lübeck, Lübeck and Cremers, Florian and Siebert, Frank-Andre and Wurster, Stefan and Department for Radiation Oncology, University Medicine Greifswald, Greifswald and Huttenlocher, Stefan and Dunst, Jürgen and Department for Radiation Oncology, University Clinic Copenhagen, Copenhagen and Hildebrandt, Guido and Schweikard, Achim and Rades, Dirk and Ernst, Floris and and others},
abstractNote = {Purpose: Although the metric precision of robotic stereotactic body radiation therapy in the presence of breathing motion is widely known, we investigated the dosimetric implications of breathing phase–related residual tracking errors. Methods and Materials: In 24 patients (28 liver metastases) treated with the CyberKnife, we recorded the residual correlation, prediction, and rotational tracking errors from 90 fractions and binned them into 10 breathing phases. The average breathing phase errors were used to shift and rotate the clinical tumor volume (CTV) and planning target volume (PTV) for each phase to calculate a pseudo 4-dimensional error dose distribution for comparison with the original planned dose distribution. Results: The median systematic directional correlation, prediction, and absolute aggregate rotation errors were 0.3 mm (range, 0.1-1.3 mm), 0.01 mm (range, 0.00-0.05 mm), and 1.5° (range, 0.4°-2.7°), respectively. Dosimetrically, 44%, 81%, and 92% of all voxels differed by less than 1%, 3%, and 5% of the planned local dose, respectively. The median coverage reduction for the PTV was 1.1% (range in coverage difference, −7.8% to +0.8%), significantly depending on correlation (P=.026) and rotational (P=.005) error. With a 3-mm PTV margin, the median coverage change for the CTV was 0.0% (range, −1.0% to +5.4%), not significantly depending on any investigated parameter. In 42% of patients, the 3-mm margin did not fully compensate for the residual tracking errors, resulting in a CTV coverage reduction of 0.1% to 1.0%. Conclusions: For liver tumors treated with robotic stereotactic body radiation therapy, a safety margin of 3 mm is not always sufficient to cover all residual tracking errors. Dosimetrically, this translates into only small CTV coverage reductions.},
doi = {10.1016/J.IJROBP.2016.11.041},
journal = {International Journal of Radiation Oncology, Biology and Physics},
number = 4,
volume = 97,
place = {United States},
year = {Wed Mar 15 00:00:00 EDT 2017},
month = {Wed Mar 15 00:00:00 EDT 2017}
}
  • Purpose: To explore the dosimetric consequences of uncorrected rotational setup errors during SBRT for pancreatic cancer patients. Methods: This was a retrospective study utilizing data from ten (n=10) previously treated SBRT pancreas patients. For each original planning CT, we applied rotational transformations to derive additional CT images representative of possible rotational setup errors. This resulted in 6 different sets of rotational combinations, creating a total of 60 CT planning images. The patients’ clinical dosimetric plans were then applied to their corresponding rotated CT images. The 6 rotation sets encompassed a 3, 2 and 1-degree rotation in each rotational direction andmore » a 3-degree in just the pitch, a 3-degree in just the yaw and a 3-degree in just the roll. After the dosimetric plan was applied to the rotated CT images, the resulting plan was then evaluated and compared with the clinical plan for tumor coverage and normal tissue sparing. Results: PTV coverage, defined here by V33 throughout all of the patients’ clinical plans, ranged from 92–98%. After an n degree rotation in each rotational direction that range decreased to 68–87%, 85–92%, and 88– 94% for n=3, 2 and 1 respectively. Normal tissue sparing defined here by the proximal stomach V15 throughout all of the patients’ clinical plans ranged from 0–8.9 cc. After an n degree rotation in each rotational direction that range increased to 0–17 cc, 0–12 cc, and 0–10 cc for n=3, 2, and 1 respectively. Conclusion: For pancreatic SBRT, small rotational setup errors in the pitch, yaw and roll direction on average caused under dosage to PTV and over dosage to proximal normal tissue. The 1-degree rotation was on average the least detrimental to the normal tissue and the coverage of the PTV. The 3-degree yaw created on average the lowest increase in volume coverage to normal tissue. This research was sponsored by the AAPM Education Council through the AAPM Education and Research Fund for the AAPM Summer Undergraduate Fellowship Program.« less
  • Purpose: To quantify respiratory-induced motion of liver segments using the positions of implanted fiducials during robotic radiosurgery. This study also compared fiducial motion derived from four-dimensional computed tomography (4D-CT) maximum intensity projections (MIP) with motion derived from imaging during treatment. Methods: Forty-two consecutive liver patients treated with liver ablative radiotherapy were accrued to an ethics approved retrospective study. The liver segment in which each fiducial resided was identified. Fiducial positions throughout each treatment fraction were determined using orthogonal kilovoltage images. Any data due to patient repositioning or motion was removed. Mean fiducial positions were calculated. Fiducial positions beyond two standardmore » deviations of the mean were discarded and remaining positions were fit to a line segment using least squares minimization (LSM). For eight patients, fiducial motion was derived from 4D-CT MIPs by calculating the CT number weighted mean position of the fiducial on each slice and fitting a line segment to these points using LSM. Treatment derived fiducial trajectories were corrected for patient rotation and compared to MIP derived trajectories. Results: The mean total magnitude of fiducial motion across all liver segments in left-right, anteroposterior, and superoinferior (SI) directions were 3.0 ± 0.2 mm, 9.3 ± 0.4 mm, and 20.5 ± 0.5 mm, respectively. Differences in per-segment mean fiducial motion were found with SI motion ranging from 12.6 ± 0.8 mm to 22.6 ± 0.9 mm for segments 3 and 8, respectively. Large, varied differences between treatment and MIP derived motion at simulation were found with the mean difference for SI motion being 2.6 mm (10.8 mm standard deviation). Conclusion: The magnitude of liver fiducial motion was found to differ by liver segment. MIP derived liver fiducial motion differed from motion observed during treatment, implying that 4D-CTs may not accurately capture the range of liver motion across fractions and during treatment. Author V. Nair was funded by the Cushing estate for a SABR clinical research fellowship.« less
  • Purpose: To evaluate the proportion of liver SBRT cases in which robotic ultrasound image guidance concurrent with beam delivery can be deployed without interfering with clinically used VMAT beam configurations. Methods: A simulation environment incorporating LINAC, couch, planning CT, and robotic ultrasound guidance hardware was developed. Virtual placement of the robotic ultrasound hardware was guided by a target visibility map rendered on the CT surface. The map was computed on GPU by using the planning CT to simulate ultrasound propagation and attenuation along rays connecting skin surface points to a rasterized imaging target. The visibility map was validated in amore » prostate phantom experiment by capturing live ultrasound images of the prostate from different phantom locations. In 20 liver SBRT patients treated with VMAT, the simulation environment was used to place the robotic hardware and ultrasound probe at imaging locations indicated on the visibility map. Imaging targets were either entire PTV (range 5.9–679.5 ml) or entire GTV (range 0.9–343.4 ml). Presence or absence of mechanical collisions with LINAC, couch, and patient body as well as interferences with treated beams were recorded. Results: For PTV targets, robotic ultrasound guidance without mechanical collision was possible in 80% of the cases and guidance without beam interference was possible in 60% of the cases. For the smaller GTV targets, these proportions were 95% and 85% correspondingly. GTV size (1/20), elongated shape (1/20), and depth (1/20) were the main factors limiting the availability of non-interfering imaging positions. Conclusion: This study indicates that for VMAT liver SBRT, robotic ultrasound tracking of a relevant internal target would be possible in 85% of cases while using treatment plans currently deployed in the clinic. With beam re-planning in accordance with the presence of robotic ultrasound guidance, intra-fractional ultrasound guidance may be an option for 95% of the liver SBRT cases. This project was funded by NIH Grant R41CA174089.« less
  • Purpose: To determine the maximum tolerated dose (MTD) of stereotactic body radiation therapy (SBRT) for liver metastases. Methods and Materials: A multicenter Phase I clinical trial was conducted. Eligible patients had one to three liver metastases, tumor diameter <6 cm, and adequate liver function. The first cohort received 36 Gy to the planning target volume (PTV) in three fractions (F). Subsequent cohorts received higher doses up to a chosen maximum of 60 Gy/3F. At least 700 mL of normal liver had to receive a total dose <15 Gy. Dose-limiting toxicity (DLT) included acute Grade 3 liver or intestinal toxicity ormore » any acute Grade 4 toxicity. The MTD was exceeded if 2/6 patients in a cohort experienced DLT. Results: Eighteen patients were enrolled (10 male, 8 female): median age, 55 years (range, 26-83 years); most common primary site, colorectal (6 patients); median aggregate gross tumor volume, 18 ml (range, 3-98 ml). Four patients had multiple tumors. No patient experienced a DLT, and dose was escalated to 60 Gy/3F without reaching MTD. Conclusions: Biologically potent doses of SBRT are well tolerated in patients with limited liver metastases. Results of this study form the basis for an ongoing Phase II SBRT study of 60 Gy over three fractions for liver metastases.« less
  • Purpose: To investigate the influence of respiratory motion on the delivered dose in lung stereotactic body radiotherapy (SBRT) using Cyberknife (CK) 0-View tracking mode. Methods: CT scans at inspiration and expiration of an anthropomorphic motion phantom were fused base on the spine and an internal target volume (ITV) was created. A 5mm expansion around the ITV resulted in the planning target volume. Three CK plans were generated in Accuray MultiPlan using Lung Optimization Tracking 0-View technique with the minimum MU per beam set to (a) 5MU, (b) 15MU and (c) 30MU, respectively. Doses were calculated on the expiration CT usingmore » Monte-Carlo algorithm. Each plan was delivered 5 times with a range of different starting phases in the respiratory cycle to assess the dose variation due to interplay effect. The delivered dose was measured with EBT3 Gafchromic film which was inserted in the moving target of the phantom. The target motion range is 3 cm in superior-inferior (SI) direction with the breathing period of 5 seconds. Results: The gamma analysis (5%/2mm) of the dose with the films in the transverse plane resulted in average passing rate of 95.5±4.1%, 96.7±2.6%, and 96.2±2.5% for plan (a), (b), and (c), respectively. For the sagittal films, the average passing rate was 91.1±4.9%, 92.1±3.6%, and 92.3±2.9% for the three plans, respectively. The disagreement between measurement and dose calculations were mostly on the target edges in SI direction. The mean measured versus calculated dose differences at the edge of target in SI direction were (a) 3.9±4.8%, (b) 2.4±3.3%, and (c) 2.2±3.2% for the three plans, respectively. Conclusions: The plans with low-MU beams (below 10MU) tend to cause slightly larger dose variation. However in terms of target coverage, the overall clinical dosimetric impact of the intrafraction respiratory motion in lung SBRT is insignificant when averaged over 3∼5 fractions.« less