skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nucleus and nucleus-cytoskeleton connections in 3D cell migration

Abstract

Cell migration plays an important role in many physiological and pathological settings, ranging from embryonic development to cancer metastasis. Currently, accumulating data suggest that cells migrating in three-dimensional (3D) environments show well-defined differences compared to their well-established two-dimensional (2D) counterparts. During 3D migration, the cell body and nucleus must deform to allow cellular passage through the available spaces, and the deformability of the relatively rigid nucleus may constitute a limiting step. Here, we highlight the key evidence regarding the role of the nuclear mechanics in 3D migration, including the molecular components that govern the stiffness of the nucleus and review how the nuclear dynamics are connected to and controlled by cytoskeleton-based migration machinery. Intriguingly, nuclear movement must be coordinated with the cytoskeletal dynamics at the leading and trailing edges, which in turn impact the cytoplasmic dynamics that affect the migration efficiency. Thus, we suggest that alterations in the nuclear structure may facilitate cellular reorganizations that are necessary for efficient migration. - Graphical abstract: Schematic representations of a cell migrating on a 2D substrate and a cell migrating in a 3D extracellular matrix environment. (A) Nucleus-cytoskeleton connections are essential to 3D migration. Mechanical signals are transduced by integrins at the cellmore » surface and channeled to cytoskeletal proteins, which generates prestress. The nucleus-cytoskeleton connections can either act as a stable skeleton to anchor the nuclei or provide active force to move the nuclei. The LINC complex is responsible for the nucleo-cytoskeletal coupling. Nesprins connect the cytoskeletal proteins to the inner nuclear membrane proteins SUN1 and SUN2. The SUN proteins connect to the lamins that form the lamina, which attaches to the chromatin. This physical connectivity transmits the mechanical signals from receptors at the cell membrane through the cytoskeletal architecture to the nucleus and into the chromosomes. On a 2D substrate (B), the nucleus can be subjected to tensional forces emanating from the stress fibers and compressive forces due to the actin cap structures and the resistance of the surface. In a 3D environment (C), the migration process requires reshaping of the nucleus and squeezing it through narrow openings in the ECM. During this process the cells may also experience both tension generated by the actomyosin filaments and compression resulting from the high pressure of the anterior compartment. - Highlights: • The influence of nuclear size and stiffness in cell migration is discussed. • We describe molecular components that govern the mechanical properties of the nucleus. • We discuss the roles of chromatin, lamin A/C in nuclear mechanical properties and cell migration. • We review how nuclear dynamics are connected to cytoskeleton. • We discuss the role of nucleo-cytoskeletal coupling in cell migration.« less

Authors:
; ; ;
Publication Date:
OSTI Identifier:
22649771
Resource Type:
Journal Article
Journal Name:
Experimental Cell Research
Additional Journal Information:
Journal Volume: 348; Journal Issue: 1; Other Information: Copyright (c) 2016 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 0014-4827
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; ACTIN; CELL MEMBRANES; FILAMENTS; FLEXIBILITY; GERM CELLS; HETEROCHROMATIN; HISTONES; METASTASES; METHYL TRANSFERASES; MICROTUBULES; POLYPEPTIDES; RECEPTORS; REVIEWS; SKELETON

Citation Formats

Liu, Lingling, Luo, Qing, Sun, Jinghui, and Song, Guanbin. Nucleus and nucleus-cytoskeleton connections in 3D cell migration. United States: N. p., 2016. Web. doi:10.1016/J.YEXCR.2016.09.001.
Liu, Lingling, Luo, Qing, Sun, Jinghui, & Song, Guanbin. Nucleus and nucleus-cytoskeleton connections in 3D cell migration. United States. https://doi.org/10.1016/J.YEXCR.2016.09.001
Liu, Lingling, Luo, Qing, Sun, Jinghui, and Song, Guanbin. Sat . "Nucleus and nucleus-cytoskeleton connections in 3D cell migration". United States. https://doi.org/10.1016/J.YEXCR.2016.09.001.
@article{osti_22649771,
title = {Nucleus and nucleus-cytoskeleton connections in 3D cell migration},
author = {Liu, Lingling and Luo, Qing and Sun, Jinghui and Song, Guanbin},
abstractNote = {Cell migration plays an important role in many physiological and pathological settings, ranging from embryonic development to cancer metastasis. Currently, accumulating data suggest that cells migrating in three-dimensional (3D) environments show well-defined differences compared to their well-established two-dimensional (2D) counterparts. During 3D migration, the cell body and nucleus must deform to allow cellular passage through the available spaces, and the deformability of the relatively rigid nucleus may constitute a limiting step. Here, we highlight the key evidence regarding the role of the nuclear mechanics in 3D migration, including the molecular components that govern the stiffness of the nucleus and review how the nuclear dynamics are connected to and controlled by cytoskeleton-based migration machinery. Intriguingly, nuclear movement must be coordinated with the cytoskeletal dynamics at the leading and trailing edges, which in turn impact the cytoplasmic dynamics that affect the migration efficiency. Thus, we suggest that alterations in the nuclear structure may facilitate cellular reorganizations that are necessary for efficient migration. - Graphical abstract: Schematic representations of a cell migrating on a 2D substrate and a cell migrating in a 3D extracellular matrix environment. (A) Nucleus-cytoskeleton connections are essential to 3D migration. Mechanical signals are transduced by integrins at the cell surface and channeled to cytoskeletal proteins, which generates prestress. The nucleus-cytoskeleton connections can either act as a stable skeleton to anchor the nuclei or provide active force to move the nuclei. The LINC complex is responsible for the nucleo-cytoskeletal coupling. Nesprins connect the cytoskeletal proteins to the inner nuclear membrane proteins SUN1 and SUN2. The SUN proteins connect to the lamins that form the lamina, which attaches to the chromatin. This physical connectivity transmits the mechanical signals from receptors at the cell membrane through the cytoskeletal architecture to the nucleus and into the chromosomes. On a 2D substrate (B), the nucleus can be subjected to tensional forces emanating from the stress fibers and compressive forces due to the actin cap structures and the resistance of the surface. In a 3D environment (C), the migration process requires reshaping of the nucleus and squeezing it through narrow openings in the ECM. During this process the cells may also experience both tension generated by the actomyosin filaments and compression resulting from the high pressure of the anterior compartment. - Highlights: • The influence of nuclear size and stiffness in cell migration is discussed. • We describe molecular components that govern the mechanical properties of the nucleus. • We discuss the roles of chromatin, lamin A/C in nuclear mechanical properties and cell migration. • We review how nuclear dynamics are connected to cytoskeleton. • We discuss the role of nucleo-cytoskeletal coupling in cell migration.},
doi = {10.1016/J.YEXCR.2016.09.001},
url = {https://www.osti.gov/biblio/22649771}, journal = {Experimental Cell Research},
issn = {0014-4827},
number = 1,
volume = 348,
place = {United States},
year = {2016},
month = {10}
}