skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MO-DE-207B-07: Assessment of Reproducibility Of FDG-PET-Based Radiomics Features Across Scanners Using Phantom Imaging

Abstract

Purpose: Use a NEMA-IEC PET phantom to assess the robustness of FDG-PET-based radiomics features to changes in reconstruction parameters across different scanners. Methods: We scanned a NEMA-IEC PET phantom on 3 different scanners (GE Discovery VCT, GE Discovery 710, and Siemens mCT) using a FDG source-to-background ratio of 10:1. Images were retrospectively reconstructed using different iterations (2–3), subsets (21–24), Gaussian filter widths (2, 4, 6mm), and matrix sizes (128,192,256). The 710 and mCT used time-of-flight and point-spread-functions in reconstruction. The axial-image through the center of the 6 active spheres was used for analysis. A region-of-interest containing all spheres was able to simulate a heterogeneous lesion due to partial volume effects. Maximum voxel deviations from all retrospectively reconstructed images (18 per scanner) was compared to our standard clinical protocol. PET Images from 195 non-small cell lung cancer patients were used to compare feature variation. The ratio of a feature’s standard deviation from the patient cohort versus the phantom images was calculated to assess for feature robustness. Results: Across all images, the percentage of voxels differing by <1SUV and <2SUV ranged from 61–92% and 88–99%, respectively. Voxel-voxel similarity decreased when using higher resolution image matrices (192/256 versus 128) and was comparable acrossmore » scanners. Taking the ratio of patient and phantom feature standard deviation was able to identify features that were not robust to changes in reconstruction parameters (e.g. co-occurrence correlation). Metrics found to be reasonably robust (standard deviation ratios > 3) were observed for routinely used SUV metrics (e.g. SUVmean and SUVmax) as well as some radiomics features (e.g. co-occurrence contrast, co-occurrence energy, standard deviation, and uniformity). Similar standard deviation ratios were observed across scanners. Conclusions: Our method enabled a comparison of feature variability across scanners and was able to identify features that were not robust to changes in reconstruction parameters.« less

Authors:
 [1]; ; ; ; ; ;  [2]
  1. University of North Carolina at Chapel Hill, Chapel Hill, NC (United States)
  2. UT MD Anderson Cancer Center, Houston, TX (United States)
Publication Date:
OSTI Identifier:
22649568
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BIOMEDICAL RADIOGRAPHY; IMAGES; MATRICES; PATIENTS; PHANTOMS; POSITRON COMPUTED TOMOGRAPHY; TIME-OF-FLIGHT METHOD

Citation Formats

Fried, D, Meier, J, Mawlawi, O, Zhou, S, Ibbott, G, Liao, Z, and Court, L. MO-DE-207B-07: Assessment of Reproducibility Of FDG-PET-Based Radiomics Features Across Scanners Using Phantom Imaging. United States: N. p., 2016. Web. doi:10.1118/1.4957256.
Fried, D, Meier, J, Mawlawi, O, Zhou, S, Ibbott, G, Liao, Z, & Court, L. MO-DE-207B-07: Assessment of Reproducibility Of FDG-PET-Based Radiomics Features Across Scanners Using Phantom Imaging. United States. doi:10.1118/1.4957256.
Fried, D, Meier, J, Mawlawi, O, Zhou, S, Ibbott, G, Liao, Z, and Court, L. 2016. "MO-DE-207B-07: Assessment of Reproducibility Of FDG-PET-Based Radiomics Features Across Scanners Using Phantom Imaging". United States. doi:10.1118/1.4957256.
@article{osti_22649568,
title = {MO-DE-207B-07: Assessment of Reproducibility Of FDG-PET-Based Radiomics Features Across Scanners Using Phantom Imaging},
author = {Fried, D and Meier, J and Mawlawi, O and Zhou, S and Ibbott, G and Liao, Z and Court, L},
abstractNote = {Purpose: Use a NEMA-IEC PET phantom to assess the robustness of FDG-PET-based radiomics features to changes in reconstruction parameters across different scanners. Methods: We scanned a NEMA-IEC PET phantom on 3 different scanners (GE Discovery VCT, GE Discovery 710, and Siemens mCT) using a FDG source-to-background ratio of 10:1. Images were retrospectively reconstructed using different iterations (2–3), subsets (21–24), Gaussian filter widths (2, 4, 6mm), and matrix sizes (128,192,256). The 710 and mCT used time-of-flight and point-spread-functions in reconstruction. The axial-image through the center of the 6 active spheres was used for analysis. A region-of-interest containing all spheres was able to simulate a heterogeneous lesion due to partial volume effects. Maximum voxel deviations from all retrospectively reconstructed images (18 per scanner) was compared to our standard clinical protocol. PET Images from 195 non-small cell lung cancer patients were used to compare feature variation. The ratio of a feature’s standard deviation from the patient cohort versus the phantom images was calculated to assess for feature robustness. Results: Across all images, the percentage of voxels differing by <1SUV and <2SUV ranged from 61–92% and 88–99%, respectively. Voxel-voxel similarity decreased when using higher resolution image matrices (192/256 versus 128) and was comparable across scanners. Taking the ratio of patient and phantom feature standard deviation was able to identify features that were not robust to changes in reconstruction parameters (e.g. co-occurrence correlation). Metrics found to be reasonably robust (standard deviation ratios > 3) were observed for routinely used SUV metrics (e.g. SUVmean and SUVmax) as well as some radiomics features (e.g. co-occurrence contrast, co-occurrence energy, standard deviation, and uniformity). Similar standard deviation ratios were observed across scanners. Conclusions: Our method enabled a comparison of feature variability across scanners and was able to identify features that were not robust to changes in reconstruction parameters.},
doi = {10.1118/1.4957256},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: To investigate the impact of reconstruction Field of View on Radiomics features in computed tomography (CT) using a texture phantom. Methods: A rectangular Credence Cartridge Radiomics (CCR) phantom, composed of 10 different cartridges, was scanned on four different CT scanners from two manufacturers. A pre-defined scanning protocol was adopted for consistency. The slice thickness and reconstruction interval of 1.5 mm was used on all scanners. The reconstruction FOV was varied to result a voxel size ranging from 0.38 to 0.98 mm. A spherical region of interest (ROI) was contoured on the shredded rubber cartridge from CCR phantom CT scans.more » Ninety three Radiomics features were extracted from ROI using an in-house program. These include 10 shape, 22 intensity, 26 GLCM, 11 GLZSM, 11 RLM, 5 NGTDM and 8 fractal dimensional features. To evaluate the Interscanner variability across three scanners, a coefficient of variation (COV) was calculated for each feature group. Each group was further classified according to the COV by calculating the percentage of features in each of the following categories: COV≤ 5%, between 5 and 10% and ≥ 10%. Results: Shape features were the most robust, as expected, because of the spherical contouring of ROI. Intensity features were the second most robust with 54.5 to 64% of features with COV < 5%. GLCM features ranged from 31 to 35% for the same category. RLM features were sensitive to specific scanner and 5% variability was 9 to 54%. Almost all GLZM and NGTDM features showed COV ≥10% among the scanners. The dependence of fractal dimensions features on FOV was not consistent across different scanners. Conclusion: We concluded that reconstruction FOV greatly influence Radiomics features. The GLZSM and NGTDM are highly sensitive to FOV. funded in part by Grant NIH/NCI R01CA190105-01.« less
  • Purpose: To develop and validate a prediction model using radiomics features extracted from MR images to distinguish radiation necrosis from tumor progression for brain metastases treated with Gamma knife radiosurgery. Methods: The images used to develop the model were T1 post-contrast MR scans from 71 patients who had had pathologic confirmation of necrosis or progression; 1 lesion was identified per patient (17 necrosis and 54 progression). Radiomics features were extracted from 2 images at 2 time points per patient, both obtained prior to resection. Each lesion was manually contoured on each image, and 282 radiomics features were calculated for eachmore » lesion. The correlation for each radiomics feature between two time points was calculated within each group to identify a subset of features with distinct values between two groups. The delta of this subset of radiomics features, characterizing changes from the earlier time to the later one, was included as a covariate to build a prediction model using support vector machines with a cubic polynomial kernel function. The model was evaluated with a 10-fold cross-validation. Results: Forty radiomics features were selected based on consistent correlation values of approximately 0 for the necrosis group and >0.2 for the progression group. In performing the 10-fold cross-validation, we narrowed this number down to 11 delta radiomics features for the model. This 11-delta-feature model showed an overall prediction accuracy of 83.1%, with a true positive rate of 58.8% in predicting necrosis and 90.7% for predicting tumor progression. The area under the curve for the prediction model was 0.79. Conclusion: These delta radiomics features extracted from MR scans showed potential for distinguishing radiation necrosis from tumor progression. This tool may be a useful, noninvasive means of determining the status of an enlarging lesion after radiosurgery, aiding decision-making regarding surgical resection versus conservative medical management.« less
  • Purpose: The goal of this work is to investigate the use of contrast enhanced computed tomographic (CT) features for the prediction of mutations of BAP1, PBRM1, and VHL genes in renal cell carcinoma (RCC). Methods: For this study, we used two patient databases with renal cell carcinoma (RCC). The first one consisted of 33 patients from our institution (UT Southwestern Medical Center, UTSW). The second one consisted of 24 patients from the Cancer Imaging Archive (TCIA), where each patient is connected by a unique identi?er to the tissue samples from the Cancer Genome Atlas (TCGA). From the contrast enhanced CTmore » image of each patient, tumor contour was first delineated by a physician. Geometry, intensity, and texture features were extracted from the delineated tumor. Based on UTSW dataset, we completed feature selection and trained a support vector machine (SVM) classifier to predict mutations of BAP1, PBRM1 and VHL genes. We then used TCIA-TCGA dataset to validate the predictive model build upon UTSW dataset. Results: The prediction accuracy of gene expression of TCIA-TCGA patients was 0.83 (20 of 24), 0.83 (20 of 24), and 0.75 (18 of 24) for BAP1, PBRM1, and VHL respectively. For BAP1 gene, texture feature was the most prominent feature type. For PBRM1 gene, intensity feature was the most prominent. For VHL gene, geometry, intensity, and texture features were all important. Conclusion: Using our feature selection strategy and models, we achieved predictive accuracy over 0.75 for all three genes under the condition of using patient data from one institution for training and data from other institutions for testing. These results suggest that radiogenomics can be used to aid in prognosis and used as convenient surrogates for expensive and time consuming gene assay procedures.« less
  • Purpose: To determine how radiomics features change during radiation therapy and whether those changes (delta-radiomics features) can improve prognostic models built with clinical factors. Methods: 62 radiomics features, including histogram, co-occurrence, run-length, gray-tone difference, and shape features, were calculated from pretreatment and weekly intra-treatment CTs for 107 stage III NSCLC patients (5–9 images per patient). Image preprocessing for each feature was determined using the set of pretreatment images: bit-depth resample and/or a smoothing filter were tested for their impact on volume-correlation and significance of each feature in univariate cox regression models to maximize their information content. Next, the optimized featuresmore » were calculated from the intratreatment images and tested in linear mixed-effects models to determine which features changed significantly with dose-fraction. The slopes in these significant features were defined as delta-radiomics features. To test their prognostic potential multivariate cox regression models were fitted, first using only clinical features and then clinical+delta-radiomics features for overall-survival, local-recurrence, and distant-metastases. Leave-one-out cross validation was used for model-fitting and patient predictions. Concordance indices(c-index) and p-values for the log-rank test with patients stratified at the median were calculated. Results: Approximately one-half of the 62 optimized features required no preprocessing, one-fourth required smoothing, and one-fourth required smoothing and resampling. From these, 54 changed significantly during treatment. For overall-survival, the c-index improved from 0.52 for clinical factors alone to 0.62 for clinical+delta-radiomics features. For distant-metastases, the c-index improved from 0.53 to 0.58, while for local-recurrence it did not improve. Patient stratification significantly improved (p-value<0.05) for overallsurvival and distant-metastases when delta-radiomics features were included. The delta-radiomics versions of autocorrelation, kurtosis, and compactness were selected most frequently in leave-one-out iterations. Conclusion: Weekly changes in radiomics features can potentially be used to evaluate treatment response and predict patient outcomes. High-risk patients could be recommended for dose escalation or consolidation chemotherapy. This project was funded in part by grants from the National Cancer Institute (NCI) and the Cancer Prevention Research Institute of Texas (CPRIT).« less
  • Purpose: To evaluate the reproducibility of radiomics features by repeating computed tomographic (CT) scans in rectal cancer. To choose stable radiomics features for rectal cancer. Methods: 40 rectal cancer patients were enrolled in this study, each of whom underwent two CT scans within average 8.7 days (5 days to 17 days), before any treatment was delivered. The rectal gross tumor volume (GTV) was distinguished and segmented by an experienced oncologist in both CTs. Totally, more than 2000 radiomics features were defined in this study, which were divided into four groups (I: GLCM, II: GLRLM III: Wavelet GLCM and IV: Waveletmore » GLRLM). For each group, five types of features were extracted (Max slice: features from the largest slice of target images, Max value: features from all slices of target images and choose the maximum value, Min value: minimum value of features for all slices, Average value: average value of features for all slices, Matrix sum: all slices of target images translate into GLCM and GLRLM matrices and superpose all matrices, then extract features from the superposed matrix). Meanwhile a LOG (Laplace of Gauss) filter with different parameters was applied to these images. Concordance correlation coefficients (CCC) and inter-class correlation coefficients (ICC) were calculated to assess the reproducibility. Results: 403 radiomics features were extracted from each type of patients’ medical images. Features of average type are the most reproducible. Different filters have little effect for radiomics features. For the average type features, 253 out of 403 features (62.8%) showed high reproducibility (ICC≥0.8), 133 out of 403 features (33.0%) showed medium reproducibility (0.8≥ICC≥0.5) and 17 out of 403 features (4.2%) showed low reproducibility (ICC≥0.5). Conclusion: The average type radiomics features are the most stable features in rectal cancer. Further analysis of these features of rectal cancer can be warranted for treatment monitoring and prognosis prediction.« less