skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MO-DE-202-02: Advances in Image Registration and Reconstruction for Image-Guided Neurosurgery

Abstract

At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such asmore » neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504 Disclosure and CoI: IGI Technologies, small-business partner on the grants.« less

Authors:
 [1]
  1. Johns Hopkins University (United States)
Publication Date:
OSTI Identifier:
22649542
Resource Type:
Journal Article
Journal Name:
Medical Physics
Additional Journal Information:
Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA); Journal ID: ISSN 0094-2405
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; 61 RADIATION PROTECTION AND DOSIMETRY; 60 APPLIED LIFE SCIENCES; BIOMEDICAL RADIOGRAPHY; FINANCING; IMAGE PROCESSING; LEARNING; SURGERY

Citation Formats

Siewerdsen, J. MO-DE-202-02: Advances in Image Registration and Reconstruction for Image-Guided Neurosurgery. United States: N. p., 2016. Web. doi:10.1118/1.4957226.
Siewerdsen, J. MO-DE-202-02: Advances in Image Registration and Reconstruction for Image-Guided Neurosurgery. United States. https://doi.org/10.1118/1.4957226
Siewerdsen, J. 2016. "MO-DE-202-02: Advances in Image Registration and Reconstruction for Image-Guided Neurosurgery". United States. https://doi.org/10.1118/1.4957226.
@article{osti_22649542,
title = {MO-DE-202-02: Advances in Image Registration and Reconstruction for Image-Guided Neurosurgery},
author = {Siewerdsen, J.},
abstractNote = {At least three major trends in surgical intervention have emerged over the last decade: a move toward more minimally invasive (or non-invasive) approach to the surgical target; the development of high-precision treatment delivery techniques; and the increasing role of multi-modality intraoperative imaging in support of such procedures. This symposium includes invited presentations on recent advances in each of these areas and the emerging role for medical physics research in the development and translation of high-precision interventional techniques. The four speakers are: Keyvan Farahani, “Image-guided focused ultrasound surgery and therapy” Jeffrey H. Siewerdsen, “Advances in image registration and reconstruction for image-guided neurosurgery” Tina Kapur, “Image-guided surgery and interventions in the advanced multimodality image-guided operating (AMIGO) suite” Raj Shekhar, “Multimodality image-guided interventions: Multimodality for the rest of us” Learning Objectives: Understand the principles and applications of HIFU in surgical ablation. Learn about recent advances in 3D–2D and 3D deformable image registration in support of surgical safety and precision. Learn about recent advances in model-based 3D image reconstruction in application to intraoperative 3D imaging. Understand the multi-modality imaging technologies and clinical applications investigated in the AMIGO suite. Understand the emerging need and techniques to implement multi-modality image guidance in surgical applications such as neurosurgery, orthopaedic surgery, vascular surgery, and interventional radiology. Research supported by the NIH and Siemens Healthcare.; J. Siewerdsen; Grant Support - National Institutes of Health; Grant Support - Siemens Healthcare; Grant Support - Carestream Health; Advisory Board - Carestream Health; Licensing Agreement - Carestream Health; Licensing Agreement - Elekta Oncology.; T. Kapur, P41EB015898; R. Shekhar, Funding: R42CA137886 and R41CA192504 Disclosure and CoI: IGI Technologies, small-business partner on the grants.},
doi = {10.1118/1.4957226},
url = {https://www.osti.gov/biblio/22649542}, journal = {Medical Physics},
issn = {0094-2405},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}