skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MO-DE-BRA-06: 3D Image Acquisition and Reconstruction Explained with Online Animations

Abstract

Purpose: Understanding the principles of 3D imaging and image reconstruction is fundamental to the field of medical imaging. Clinicians, technologists, physicists, patients, students, and inquisitive minds all stand to benefit from greater comprehension of the supporting technologies. To help explain the basic principles of 3D imaging, we developed multi-frame animations that convey the concepts of tomographic imaging. The series of free (gif) animations are accessible online, and provide a multimedia introduction to the main concepts of image reconstruction. Methods: Text and animations were created to convey the principles of analytic tomography in CT, PET, and SPECT. Specific topics covered included: principles of sinograms/image data storage, forward projection, principles of PET acquisitions, and filtered backprojection. A total of 8 animations were created and presented for CT, PET, and digital phantom formats. In addition, a free executable is also provided to allow users to create their own tomographic animations – providing an opportunity for interaction and personalization to help foster user interest. Results: Tutorial text and animations have been posted online, freely available to view or download. The animations are in first position in a google search of “image reconstruction animations”. The website currently receives approximately 200 hits/month, from all over themore » world, and the usage is growing. Positive feedback has been collected from users. Conclusion: We identified a need for improved teaching tools to help visualize the (temporally variant) concepts of image reconstruction, and have shown that animations can be a useful tool for this aspect of education. Furthermore, posting animations freely on the web has shown to be a good way to maximize their impact in the community. In future endeavors, we hope to expand this animated content, to cover principles of iterative reconstruction, as well as other phenomena relating to imaging.« less

Authors:
Publication Date:
OSTI Identifier:
22649539
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
62 RADIOLOGY AND NUCLEAR MEDICINE; 61 RADIATION PROTECTION AND DOSIMETRY; 60 APPLIED LIFE SCIENCES; BIOMEDICAL RADIOGRAPHY; IMAGE PROCESSING; ITERATIVE METHODS; POSITRON COMPUTED TOMOGRAPHY; SINGLE PHOTON EMISSION COMPUTED TOMOGRAPHY

Citation Formats

Kesner, A. MO-DE-BRA-06: 3D Image Acquisition and Reconstruction Explained with Online Animations. United States: N. p., 2016. Web. doi:10.1118/1.4957223.
Kesner, A. MO-DE-BRA-06: 3D Image Acquisition and Reconstruction Explained with Online Animations. United States. doi:10.1118/1.4957223.
Kesner, A. 2016. "MO-DE-BRA-06: 3D Image Acquisition and Reconstruction Explained with Online Animations". United States. doi:10.1118/1.4957223.
@article{osti_22649539,
title = {MO-DE-BRA-06: 3D Image Acquisition and Reconstruction Explained with Online Animations},
author = {Kesner, A},
abstractNote = {Purpose: Understanding the principles of 3D imaging and image reconstruction is fundamental to the field of medical imaging. Clinicians, technologists, physicists, patients, students, and inquisitive minds all stand to benefit from greater comprehension of the supporting technologies. To help explain the basic principles of 3D imaging, we developed multi-frame animations that convey the concepts of tomographic imaging. The series of free (gif) animations are accessible online, and provide a multimedia introduction to the main concepts of image reconstruction. Methods: Text and animations were created to convey the principles of analytic tomography in CT, PET, and SPECT. Specific topics covered included: principles of sinograms/image data storage, forward projection, principles of PET acquisitions, and filtered backprojection. A total of 8 animations were created and presented for CT, PET, and digital phantom formats. In addition, a free executable is also provided to allow users to create their own tomographic animations – providing an opportunity for interaction and personalization to help foster user interest. Results: Tutorial text and animations have been posted online, freely available to view or download. The animations are in first position in a google search of “image reconstruction animations”. The website currently receives approximately 200 hits/month, from all over the world, and the usage is growing. Positive feedback has been collected from users. Conclusion: We identified a need for improved teaching tools to help visualize the (temporally variant) concepts of image reconstruction, and have shown that animations can be a useful tool for this aspect of education. Furthermore, posting animations freely on the web has shown to be a good way to maximize their impact in the community. In future endeavors, we hope to expand this animated content, to cover principles of iterative reconstruction, as well as other phenomena relating to imaging.},
doi = {10.1118/1.4957223},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • We present and evaluate a special ultrahigh resolution mode providing considerably enhanced spatial resolution both in the scan plane and in the z-axis direction for a routine medical multi-detector row computed tomography (CT) system. Data acquisition is performed by using a flying focal spot both in the scan plane and in the z-axis direction in combination with tantalum grids that are inserted in front of the multi-row detector to reduce the aperture of the detector elements both in-plane and in the z-axis direction. The dose utilization of the system for standard applications is not affected, since the grids are movedmore » into place only when needed and are removed for standard scanning. By means of this technique, image slices with a nominal section width of 0.4 mm (measured full width at half maximum=0.45 mm) can be reconstructed in spiral mode on a CT system with a detector configuration of 32x0.6 mm. The measured 2% value of the in-plane modulation transfer function (MTF) is 20.4 lp/cm, the measured 2% value of the longitudinal (z axis) MTF is 21.5 lp/cm. In a resolution phantom with metal line pair test patterns, spatial resolution of 20 lp/cm can be demonstrated both in the scan plane and along the z axis. This corresponds to an object size of 0.25 mm that can be resolved. The new mode is intended for ultrahigh resolution bone imaging, in particular for wrists, joints, and inner ear studies, where a higher level of image noise due to the reduced aperture is an acceptable trade-off for the clinical benefit brought about by the improved spatial resolution.« less
  • Nuclear imaging devices play an important role in medical diagnosis as well as drug research. The first and second generation data acquisition systems and the image reconstruction library developed provide a unified hardware and software platform for the miniPET-I, miniPET-II small animal PET scanners and for the CARDIOTOM{sup TM}.
  • Breast tomosynthesis has been an exciting new development in the field of breast imaging. While the diagnostic improvement via tomosynthesis is notable, the full potential of tomosynthesis has not yet been realized. This may be attributed to the dependency of the diagnostic quality of tomosynthesis on multiple variables, each of which needs to be optimized. Those include dose, number of angular projections, and the total angular span of those projections. In this study, the authors investigated the effects of these acquisition parameters on the overall diagnostic image quality of breast tomosynthesis in both the projection and reconstruction space. Five mastectomymore » specimens were imaged using a prototype tomosynthesis system. 25 angular projections of each specimen were acquired at 6.2 times typical single-view clinical dose level. Images at lower dose levels were then simulated using a noise modification routine. Each projection image was supplemented with 84 simulated 3 mm 3D lesions embedded at the center of 84 nonoverlapping ROIs. The projection images were then reconstructed using a filtered backprojection algorithm at different combinations of acquisition parameters to investigate which of the many possible combinations maximizes the performance. Performance was evaluated in terms of a Laguerre-Gauss channelized Hotelling observer model-based measure of lesion detectability. The analysis was also performed without reconstruction by combining the model results from projection images using Bayesian decision fusion algorithm. The effect of acquisition parameters on projection images and reconstructed slices were then compared to derive an optimization rule for tomosynthesis. The results indicated that projection images yield comparable but higher performance than reconstructed images. Both modes, however, offered similar trends: Performance improved with an increase in the total acquisition dose level and the angular span. Using a constant dose level and angular span, the performance rolled off beyond a certain number of projections, indicating that simply increasing the number of projections in tomosynthesis may not necessarily improve its performance. The best performance for both projection images and tomosynthesis slices was obtained for 15-17 projections spanning an angular arc of {approx}45 deg. - the maximum tested in our study, and for an acquisition dose equal to single-view mammography. The optimization framework developed in this framework is applicable to other reconstruction techniques and other multiprojection systems.« less
  • Purpose: Despite increased use of heterogeneity metrics for PET imaging, standards for metrics such as textural features have yet to be developed. We evaluated the quantitative variability caused by image acquisition and reconstruction parameters on PET textural features. Methods: PET images of the NEMA IQ phantom were simulated with realistic image acquisition noise. 35 features based on intensity histograms (IH), co-occurrence matrices (COM), neighborhood-difference matrices (NDM), and zone-size matrices (ZSM) were evaluated within lesions (13, 17, 22, 28, 33 mm diameter). Variability in metrics across 50 independent images was evaluated as percent difference from mean for three phantom girths (850,more » 1030, 1200 mm) and two OSEM reconstructions (2 iterations, 28 subsets, 5 mm FWHM filtration vs 6 iterations, 28 subsets, 8.6 mm FWHM filtration). Also, patient sample size to detect a clinical effect of 30% with Bonferroni-corrected α=0.001 and 95% power was estimated. Results: As a class, NDM features demonstrated greatest sensitivity in means (5–50% difference for medium girth and reconstruction comparisons and 10–100% for large girth comparisons). Some IH features (standard deviation, energy, entropy) had variability below 10% for all sensitivity studies, while others (kurtosis, skewness) had variability above 30%. COM and ZSM features had complex sensitivities; correlation, energy, entropy (COM) and zone percentage, short-zone emphasis, zone-size non-uniformity (ZSM) had variability less than 5% while other metrics had differences up to 30%. Trends were similar for sample size estimation; for example, coarseness, contrast, and strength required 12, 38, and 52 patients to detect a 30% effect for the small girth case but 38, 88, and 128 patients in the large girth case. Conclusion: The sensitivity of PET textural features to image acquisition and reconstruction parameters is large and feature-dependent. Standards are needed to ensure that prospective trials which incorporate textural features are properly designed to detect clinical endpoints. Supported by NIH grants R01 CA169072, U01 CA148131, NCI Contract (SAIC-Frederick) 24XS036-004, and a research contract from GE Healthcare.« less
  • Purpose: Contrast time-density curves may help differentiate malignant tumors from normal tissues or benign tumors. Repetitive scans using conventional CT or cone beam CT techniques, which Result in unacceptably high dose, may not achieve the desired temporal resolution. In this study we describe and demonstrate a 4D imaging technique for imaging and quantifying contrast flows requiring only one or two 360° scans. Methods: A dual-gantry system is used to simultaneously acquire two projection images at orthogonal orientations. Following the scan, each or both of the two 360° projection sets are used to reconstruct an average contrast enhanced image set whichmore » is then segmented to form a 3D contrast map. Alternatively, a pre-injection scan may be made and used to reconstruct a pre-injection image set which is subtracted from the post-injection image set to form the 3D contrast map. Each of the two 360° projection sets is divided into 12 subsets, thus creating 12 pairs of 30° limited angle projection sets, each corresponding to a time spanning over 1/12 of the scanning time. Each pair of the projection sets are reconstructed as a time specific 3D image set with the maximum likelihood estimation iterative algorithm using the contrast map as the constraint. As a demonstration, a 4D abdominal phantom was constructed from clinical CT images with blood flow through the normal tissue and a tumor modeled and imaging process simulated. Results: We have successfully generated a 4D image phantom, and calculated the projection images. The time density curves derived from the reconstructed image set matched well with the flow model used to generate the phantom. Conclusion: Dual-gantry image acquisition and constrained iterative reconstruction algorithm may help to obtain time-density curves of contrast agents in blood flows, which may help differentiate malignant tumors from normal tissues or benign tumors.« less