skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: MO-B-BRB-03: 3D Dosimetry in the Clinic: Validating Special Techniques

Abstract

Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by the development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already availablemore » in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.« less

Authors:
 [1]
  1. Stanford Cancer Center (United States)
Publication Date:
OSTI Identifier:
22649514
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BIOMEDICAL RADIOGRAPHY; COMPUTERIZED TOMOGRAPHY; DOSEMETERS; DOSIMETRY; NMR IMAGING; QUALITY ASSURANCE; RADIATION DOSES; READOUT SYSTEMS; THREE-DIMENSIONAL CALCULATIONS; TITANIUM OXIDES

Citation Formats

Juang, T. MO-B-BRB-03: 3D Dosimetry in the Clinic: Validating Special Techniques. United States: N. p., 2016. Web. doi:10.1118/1.4957185.
Juang, T. MO-B-BRB-03: 3D Dosimetry in the Clinic: Validating Special Techniques. United States. doi:10.1118/1.4957185.
Juang, T. 2016. "MO-B-BRB-03: 3D Dosimetry in the Clinic: Validating Special Techniques". United States. doi:10.1118/1.4957185.
@article{osti_22649514,
title = {MO-B-BRB-03: 3D Dosimetry in the Clinic: Validating Special Techniques},
author = {Juang, T.},
abstractNote = {Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by the development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.},
doi = {10.1118/1.4957185},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: To present a simple and feasible method of voxel-S-value (VSV) dosimetry calculation for daily clinical use in radioembolization (RE) with {sup 90}Y microspheres. Dose distributions are obtained and visualized over CT images. Methods: Spatial dose distributions and dose in liver and tumor are calculated for RE patients treated with Sirtex Medical miscrospheres at our center. Data obtained from the previous simulation of treatment were the basis for calculations: Tc-99m maggregated albumin SPECT-CT study in a gammacamera (Infinia, General Electric Healthcare.). Attenuation correction and ordered-subsets expectation maximization (OSEM) algorithm were applied.For VSV calculations, both SPECT and CT were exported frommore » the gammacamera workstation and registered with the radiotherapy treatment planning system (Eclipse, Varian Medical systems). Convolution of activity matrix and local dose deposition kernel (S values) was implemented with an in-house developed software based on Python code. The kernel was downloaded from www.medphys.it. Final dose distribution was evaluated with the free software Dicompyler. Results: Liver mean dose is consistent with Partition method calculations (accepted as a good standard). Tumor dose has not been evaluated due to the high dependence on its contouring. Small lesion size, hot spots in health tissue and blurred limits can affect a lot the dose distribution in tumors. Extra work includes: export and import of images and other dicom files, create and calculate a dummy plan of external radiotherapy, convolution calculation and evaluation of the dose distribution with dicompyler. Total time spent is less than 2 hours. Conclusion: VSV calculations do not require any extra appointment or any uncomfortable process for patient. The total process is short enough to carry it out the same day of simulation and to contribute to prescription decisions prior to treatment. Three-dimensional dose knowledge provides much more information than other methods of dose calculation usually applied in the clinic.« less
  • Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.« less
  • Full three-dimensional (3D) dosimetry using volumetric chemical dosimeters probed by 3D imaging systems has long been a promising technique for the radiation therapy clinic, since it provides a unique methodology for dose measurements in the volume irradiated using complex conformal delivery techniques such as IMRT and VMAT. To date true 3D dosimetry is still not widely practiced in the community; it has been confined to centres of specialized expertise especially for quality assurance or commissioning roles where other dosimetry techniques are difficult to implement. The potential for improved clinical applicability has been advanced considerably in the last decade by themore » development of improved 3D dosimeters (e.g., radiochromic plastics, radiochromic gel dosimeters and normoxic polymer gel systems) and by improved readout protocols using optical computed tomography or magnetic resonance imaging. In this session, established users of some current 3D chemical dosimeters will briefly review the current status of 3D dosimetry, describe several dosimeters and their appropriate imaging for dose readout, present workflow procedures required for good dosimetry, and analyze some limitations for applications in select settings. We will review the application of 3D dosimetry to various clinical situations describing how 3D approaches can complement other dose delivery validation approaches already available in the clinic. The applications presented will be selected to inform attendees of the unique features provided by full 3D techniques. Learning Objectives: L. John Schreiner: Background and Motivation Understand recent developments enabling clinically practical 3D dosimetry, Appreciate 3D dosimetry workflow and dosimetry procedures, and Observe select examples from the clinic. Sofie Ceberg: Application to dynamic radiotherapy Observe full dosimetry under dynamic radiotherapy during respiratory motion, and Understand how the measurement of high resolution dose data in an irradiated volume can help understand interplay effects during TomoTherapy or VMAT. Titania Juang: Special techniques in the clinic and research Understand the potential for 3D dosimetry in validating dose accumulation in deformable systems, and Observe the benefits of high resolution measurements for precision therapy in SRS and in MicroSBRT for small animal irradiators Geoffrey S. Ibbott: 3D Dosimetry in end-to-end dosimetry QA Understand the potential for 3D dosimetry for end-to-end radiation therapy process validation in the in-house and external credentialing setting. Canadian Institutes of Health Research; L. Schreiner, Modus QA, London, ON, Canada; T. Juang, NIH R01CA100835.« less
  • Purpose: Photon dosimetry in the kilovolt (kV) energy range represents a major challenge for diagnostic and interventional radiology and superficial therapy. Plastic scintillation detectors (PSDs) are potentially good candidates for this task. This study proposes a simple way to obtain accurate correction factors to compensate for the response of PSDs to photon energies between 80 and 150 kVp. The performance of PSDs is also investigated to determine their potential usefulness in the diagnostic energy range. Methods: A 1-mm-diameter, 10-mm-long PSD was irradiated by a Therapax SXT 150 unit using five different beam qualities made of tube potentials ranging from 80more » to 150 kVp and filtration thickness ranging from 0.8 to 0.2 mmAl + 1.0 mmCu. The light emitted by the detector was collected using an 8-m-long optical fiber and a polychromatic photodiode, which converted the scintillation photons to an electrical current. The PSD response was compared with the reference free air dose rate measured with a calibrated Farmer NE2571 ionization chamber. PSD measurements were corrected using spectra-weighted corrections, accounting for mass energy-absorption coefficient differences between the sensitive volumes of the ionization chamber and the PSD, as suggested by large cavity theory (LCT). Beam spectra were obtained from x-ray simulation software and validated experimentally using a CdTe spectrometer. Correction factors were also obtained using Monte Carlo (MC) simulations. Percent depth dose (PDD) measurements were compensated for beam hardening using the LCT correction method. These PDD measurements were compared with uncorrected PSD data, PDD measurements obtained using Gafchromic films, Monte Carlo simulations, and previous data. Results: For each beam quality used, the authors observed an increase of the energy response with effective energy when no correction was applied to the PSD response. Using the LCT correction, the PSD response was almost energy independent, with a residual 2.1% coefficient of variation (COV) over the 80-150-kVp energy range. Monte Carlo corrections reduced the COV to 1.4% over this energy range. All PDD measurements were in good agreement with one another except for the uncorrected PSD data, in which an over-response was observed with depth (13% at 10 cm with a 100 kVp beam), showing that beam hardening had a non-negligible effect on the PSD response. A correction based on LCT compensated very well for this effect, reducing the over-response to 3%.Conclusion: In the diagnostic energy range, PSDs show high-energy dependence, which can be corrected using spectra-weighted mass energy-absorption coefficients, showing no considerable sign of quenching between these energies. Correction factors obtained by Monte Carlo simulations confirm that the approximations made by LCT corrections are valid. Thus, PSDs could be useful for real-time dosimetry in radiology applications.« less
  • Several methods for estimating the plasma potential and density using cylindrical Langmuir probes are compared to the self-consistent solutions of the Vlasov--Poisson equations calculated by Laframboise (J. G. Laframboise, Ph. D. dissertation, University of Toronto, 1966). Measurements are made during the decay of a magnetic-field-free plasma in which the mean-free path of the electron is shorter than the dimensions of the vacuum vessel (the electrons, therefore, have a Maxwellian velocity distribution). The measurements are made in a parameter range in which exact analytical solutions do not exist for the ion and electron saturation currents, 0.5{le}{ital R}/{lambda}{sub De}{le}5, where {ital R}more » is the probe radius and {lambda}{sub De} is the electron Debye length ({ital kT}{sub {ital e}}/4{pi}{ital ne}{sup 2}){sup 1/2}. An iterative procedure is used to fit the data at probe voltages both above and below the plasma potential while constraining the curves to be continuous at the plasma potential. The measured curves could be represented extremely well by the numerical results. It is therefore assumed that the plasma parameters used to fit the numerical results to the measurements are correct. The systematic errors which result from using several analysis techniques which assume {ital R}/{lambda}{sub De}{much lt}1 are also presented, and it is shown that empirical corrections to these errors can be described which compensate for the finite probe radius.« less