skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-G-IeP3-14: Updating Tools for Radiographic Technique Charts

Abstract

Purpose: Manual technique selection in radiography is needed for imaging situations where there is difficulty in proper positioning for AEC, prosthesis, for non-bucky imaging, or for guiding image repeats. Basic information about how to provide consistent image signal and contrast for various kV and tissue thickness is needed to create manual technique charts, and relevant for physicists involved in technique chart optimization. Guidance on technique combinations and rules-of-thumb to provide consistent image signal still in use today are based on measurements with optical density of screen-film combinations and older generation x-ray systems. Tools such as a kV-scale chart can be useful to know how to modify mAs when kV is changed in order to maintain consistent image receptor signal level. We evaluate these tools for modern equipment for use in optimizing proper size scaled techniques. Methods: We used a water phantom to measure calibrated signal change for CR and DR (with grid) for various beam energies. Tube current values were calculated that would yield a consistent image signal response. Data was fit to provide sufficient granularity of detail to compose technique-scale chart. Tissue thickness approximated equivalence to 80% of water depth. Results: We created updated technique-scale charts, providing mAs andmore » kV combinations to achieve consistent signal for CR and DR for various tissue equivalent thicknesses. We show how this information can be used to create properly scaled size-based manual technique charts. Conclusion: Relative scaling of mAs and kV for constant signal (i.e. the shape of the curve) appears substantially similar between film-screen and CR/DR. This supports the notion that image receptor related differences are minor factors for relative (not absolute) changes in mAs with varying kV. However, as demonstrated creation of these difficult to find detailed technique-scales are useful tools for manual chart optimization.« less

Authors:
; ; ;  [1]
  1. Mayo Clinic, Rochester, MN (United States)
Publication Date:
OSTI Identifier:
22649407
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ANIMAL TISSUES; BIOMEDICAL RADIOGRAPHY; IMAGES; MANUALS; OPTIMIZATION; SIGNALS; THICKNESS

Citation Formats

Walz-Flannigan, A, Lucas, J, Buchanan, K, and Schueler, B. SU-G-IeP3-14: Updating Tools for Radiographic Technique Charts. United States: N. p., 2016. Web. doi:10.1118/1.4957063.
Walz-Flannigan, A, Lucas, J, Buchanan, K, & Schueler, B. SU-G-IeP3-14: Updating Tools for Radiographic Technique Charts. United States. doi:10.1118/1.4957063.
Walz-Flannigan, A, Lucas, J, Buchanan, K, and Schueler, B. Wed . "SU-G-IeP3-14: Updating Tools for Radiographic Technique Charts". United States. doi:10.1118/1.4957063.
@article{osti_22649407,
title = {SU-G-IeP3-14: Updating Tools for Radiographic Technique Charts},
author = {Walz-Flannigan, A and Lucas, J and Buchanan, K and Schueler, B},
abstractNote = {Purpose: Manual technique selection in radiography is needed for imaging situations where there is difficulty in proper positioning for AEC, prosthesis, for non-bucky imaging, or for guiding image repeats. Basic information about how to provide consistent image signal and contrast for various kV and tissue thickness is needed to create manual technique charts, and relevant for physicists involved in technique chart optimization. Guidance on technique combinations and rules-of-thumb to provide consistent image signal still in use today are based on measurements with optical density of screen-film combinations and older generation x-ray systems. Tools such as a kV-scale chart can be useful to know how to modify mAs when kV is changed in order to maintain consistent image receptor signal level. We evaluate these tools for modern equipment for use in optimizing proper size scaled techniques. Methods: We used a water phantom to measure calibrated signal change for CR and DR (with grid) for various beam energies. Tube current values were calculated that would yield a consistent image signal response. Data was fit to provide sufficient granularity of detail to compose technique-scale chart. Tissue thickness approximated equivalence to 80% of water depth. Results: We created updated technique-scale charts, providing mAs and kV combinations to achieve consistent signal for CR and DR for various tissue equivalent thicknesses. We show how this information can be used to create properly scaled size-based manual technique charts. Conclusion: Relative scaling of mAs and kV for constant signal (i.e. the shape of the curve) appears substantially similar between film-screen and CR/DR. This supports the notion that image receptor related differences are minor factors for relative (not absolute) changes in mAs with varying kV. However, as demonstrated creation of these difficult to find detailed technique-scales are useful tools for manual chart optimization.},
doi = {10.1118/1.4957063},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: Accurate values for Kerma-Area-Product (KAP) are needed for patient dosimetry and quality control for exams utilizing radiographic and/or fluoroscopic imaging. The KAP measured using a typical direct KAP meter built with parallel-plate transmission ionization chamber is not precise and depends on the energy spectrum of diagnostic x-rays. This study compared the accuracy and reproducibility of KAP derived from system parameters with values measured with a direct KAP meter. Methods: IEC tolerance for displayed KAP is specified up to ± 35% above 2.5 Gy-cm{sup 2} and manufacturer’s specifications are typically ± 25%. KAP values from the direct KAP meter driftsmore » with time leading to replacement or re-calibration. More precise and consistent KAP is achievable utilizing a database of known radiation output for various system parameters. The integrated KAP meter was removed from a radiography system. A total of 48 measurements of air kerma were acquired at x-ray tube potential from 40 to 150 kVp with 10 kVp increment using ion chamber type external dosimeter at free-in-air geometry for four different types of filter combinations following the manufacturer’s service procedure. These data were used to create updated correction factors that determine air kerma computationally for given system parameters. Results of calculated KAP were evaluated against results using a calibrated ion chamber based dosimeter and a computed radiography imaging plate to measure x-ray field size. Results: The accuracy of calculated KAP from the system parameters was better within 4% deviation in all diagnostic x-ray tube potentials tested from 50 to 140 kVp. In contrast, deviations of up to 25% were measured from KAP displayed from the direct KAP meter. Conclusion: The “calculated KAP” approach provides the nominal advantage of improved accuracy and precision of displayed KAP as well as reduced cost of calibrating or replacing integrated KAP meters.« less
  • Purpose: To correct in-vivo metal-oxide-semiconductor field-effect transistor (MOSFET) dosimeters dependence on X-ray energy, dose and dose rate, and temperature in order to measure doses or exposures on several anatomic points of interest undergoing some routine radiographs. Methods: A mobile MOSFET system (BEST Medical) was carefully calibrated with X-ray at kVp of 70, 80, 100, 120, and 138 kVp, phantom temperatures at 0, 21, and 43 oC, and exposure range from 0.01 to 10 R confirmed with Raysafe and RadCal dosimeters. The MOSFETS were placed on the midline bladder or uterus, left pelvic iliac artery, left abdominal above iliac crest, abdominalmore » midline anterior at inferior margin of stomach, and left pectoral of a large and a small body-size cadavers undergoing AP/PA chest and lumber spine radiographs using manual and automatic exposure control (AEC) with and without lead shielding. MOSTFETs and TLD chips were also placed on the stomach, sigmoid, pubic symphysis, left and right pelvic walls of another cadaver for AP pelvic manual or AEC radiography prior to and after a left hip metal implant. Results: Individual MOSFET detectors had various low-dose limits in ranged from 0.03 to 0.08 R, nonlinear response to X-ray energy, and significant temperature effect of 15%. By accumulating 10 manual exposures and 20 AEC exposures, we achieved dose measured accuracy of 6%. There were up to 8 fold increases for AEC exposure of spine and chest X-ray procedure from no shielding to with shielding. For pelvic radiography, exposure to public symphysis was the highest even higher than that of the skin. After hip implant, AEC pelvic radiograph increase exposure by 30 to 200% consistent with results of TLDs. Conclusion: Dependence of energy, temperature and dose limit were accurately corrected. We have found significant exposure for those clinical pr°ocedures and the study provided evidences for developing new clinical procedures.« less
  • Purpose: The objective of this study was two-fold: (a) to test a new approach to approximating organ dose by using the effective energy of the combined 80kV/140kV beam in dual-energy (DE) computed tomography (CT), and (b) to derive the effective dose (ED) in the abdomen-pelvis protocol in DECT. Methods: A commercial dual energy CT scanner was employed using a fast-kV switch abdomen/pelvis protocol alternating between 80 kV and 140 kV. MOSFET detectors were used for organ dose measurements. First, an experimental validation of the dose equivalency between MOSFET and ion chamber (as a gold standard) was performed using a CTDImore » phantom. Second, the ED of DECT scans was measured using MOSFET detectors and an anthropomorphic phantom. For ED calculations, an abdomen/pelvis scan was used using ICRP 103 tissue weighting factors; ED was also computed using the AAPM Dose Length Product (DLP) method and compared to the MOSFET value. Results: The effective energy was determined as 42.9 kV under the combined beam from half-value layer (HVL) measurement. ED for the dual-energy scan was calculated as 16.49 ± 0.04 mSv by the MOSFET method and 14.62 mSv by the DLP method. Conclusion: Tissue dose in the center of the CTDI body phantom was 1.71 ± 0.01 cGy (ion chamber) and 1.71 ± 0.06 (MOSFET) respectively; this validated the use of effective energy method for organ dose estimation. ED from the abdomen-pelvis scan was calculated as 16.49 ± 0.04 mSv by MOSFET and 14.62 mSv by the DLP method; this suggests that the DLP method provides a reasonable approximation to the ED.« less
  • Purpose: To investigate the effects of image receptor technology and dose reduction software on radiation dose estimates for most frequently performed fluoroscopically-guided interventional (FGI) procedures at a tertiary health care center. Methods: IRB approval was obtained for retrospective analysis of FGI procedures performed in the interventional radiology suites between January-2011 and December-2015. This included procedures performed using image-intensifier (II) based systems which were subsequently replaced, flat-panel-detector (FPD) based systems which were later upgraded with ClarityIQ dose reduction software (Philips Healthcare) and relatively new FPD system already equipped with ClarityIQ. Post procedure, technologists entered system-reported cumulative air kerma (CAK) and kerma-areamore » product (KAP; only KAP for II based systems) in RIS; these values were analyzed. Data pre-processing included correcting typographical errors and cross-verifying CAK and KAP. The most frequent high and low dose FGI procedures were identified and corresponding CAK and KAP values were compared. Results: Out of 27,251 procedures within this time period, most frequent high and low dose procedures were chemo/immuno-embolization (n=1967) and abscess drainage (n=1821). Mean KAP for embolization and abscess drainage procedures were 260,657, 310,304 and 94,908 mGycm{sup 2}, and 14,497, 15,040 and 6307 mGycm{sup 2} using II-, FPD- and FPD with ClarityIQ- based systems, respectively. Statistically significant differences were observed in KAP values for embolization procedures with respect to different systems but for abscess drainage procedures significant differences were only noted between systems with FPD and FPD with ClarityIQ (p<0.05). Mean CAK reduced significantly from 823 to 308 mGy and from 43 to 21 mGy for embolization and abscess drainage procedures, respectively, in transitioning to FPD systems with ClarityIQ (p<0.05). Conclusion: While transitioning from II- to FPD- based systems was not associated with dose reduction for the most frequently performed FGI procedures, substantial dose reduction was noted with relatively newer systems and dose reduction software.« less
  • Purpose: To demonstrate the ability to perform high-resolution imaging and quantification of sparse distributions of gold nanoparticles (GNPs) within ex vivo tumor samples using a highly-sensitive benchtop L-shell x-ray fluorescence (XRF) imaging system. Methods: An optimized L-shell XRF imaging system was assembled using a tungsten-target x-ray source (operated at 62 kVp and 45 mA). The x-rays were filtered (copper: 0.08 mm & aluminum: 0.04 mm) and collimated (lead: 5 cm thickness, 3 cm aperture diameter) into a cone-beam in order to irradiate small samples or objects. A collimated (stainless steel: 4 cm thickness, 2 mm aperture diameter) silicon drift detector,more » capable of 2D translation, was placed at 90° with respect to the beam to acquire XRF/scatter spectra from regions of interest. Spectral processing involved extracting XRF signal from background, followed by attenuation correction using a Compton scatter-based normalization algorithm. Calibration phantoms with water/GNPs (0 and 0.00001–10 mg/cm{sup 3}) were used to determine the detection limit of the system at a 10-second acquisition time. The system was then used to map the distribution of GNPs within a 12×11×2 mm{sup 3} slice excised from the center of a GNP-loaded ex vivo murine tumor sample; a total of 110 voxels (2.65×10{sup −3} cm{sup 3}) were imaged with 1.3-mm spatial resolution. Results: The detection limit of the current cone-beam benchtop L-shell XRF system was 0.003 mg/cm{sup 3} (3 ppm). Intratumoral GNP concentrations ranging from 0.003 mg/cm{sup 3} (3 ppm) to a maximum of 0.055 mg/cm{sup 3} (55 ppm) and average of 0.0093 mg/cm{sup 3} (9.3 ppm) were imaged successfully within the ex vivo tumor slice. Conclusion: The developed cone-beam benchtop L-shell XRF imaging system can immediately be used for imaging of ex vivo tumor samples containing low concentrations of GNPs. With minor finetuning/optimization, the system can be directly adapted for performing routine preclinical in vivo imaging tasks. Supported by NIH/NCI grant R01CA155446 This investigation was supported by NIH/NCI grant R01CA155446.« less