skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-G-IeP3-12: Preliminary Report On the Experience of Patient Radiation Dose Monitoring and Tracking Systems; PEMNET, Radimetrics and DoseWatch

Abstract

Purpose: Three patient radiation dose monitoring and tracking (PRDMT) systems have been in operation at this institution for the past 6 months. There are useful information that should be disseminated to those who are considering installation of PRDMT programs. In addition, there are “problems” uncovered in the process of estimating fluoroscopic “peak” skin dose (PSD), especially, for those patients who received interventional angiographic studies and in conjunction with surgical procedures. Methods: Upon exporting the PRDMT data to Microsoft Excel program, the peak skin dose can be estimated by applying various correction factors including; attenuation due to the tabletop and examination mattress, table height, tabletop translation, backscatter, etc. A procedure was established to screen and divide the PRDMT reported radiation dose and estimated PSD to three different levels of threshold to assess the potential skin injuries, to assist patient follow-up, risk management and provide radiation dosimetry information in case of “Sentinel Event”. Results: The Radiation Dose Structured Report (RDSR) was found to be the prerequisite for the PRDMT systems to work seamlessly. And, the geometrical parameters (gantry and table orientation) displayed by the equipment are not necessarily implemented in the “patient centric” manner which could result in a large error inmore » the PSD estimation. Since, the PRDMT systems obtain their pertinent data from the DICOM tags including the polarity (+ and − signs), the geometrical parameters need to be verified. Conclusion: PRDMT systems provide a more accurate PSD estimation than previously possible as the air-kerma-area dose meter become widely implemented. However, care should be exercised to correctly apply the geometrical parameters in estimating the patient dose. In addition, further refinement is necessary for these software programs to account for all geometrical parameters such as the tabletop translation in the z-direction in particular.« less

Authors:
; ;  [1]
  1. Virginia Commonwealth University Medical Center, Richmond, VA (United States)
Publication Date:
OSTI Identifier:
22649405
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; COMPUTER CODES; KERMA; PATIENTS; RADIATION DOSES; RADIATION MONITORING; SKIN

Citation Formats

Lin, P, Corwin, F, and Ghita, M. SU-G-IeP3-12: Preliminary Report On the Experience of Patient Radiation Dose Monitoring and Tracking Systems; PEMNET, Radimetrics and DoseWatch. United States: N. p., 2016. Web. doi:10.1118/1.4957061.
Lin, P, Corwin, F, & Ghita, M. SU-G-IeP3-12: Preliminary Report On the Experience of Patient Radiation Dose Monitoring and Tracking Systems; PEMNET, Radimetrics and DoseWatch. United States. doi:10.1118/1.4957061.
Lin, P, Corwin, F, and Ghita, M. 2016. "SU-G-IeP3-12: Preliminary Report On the Experience of Patient Radiation Dose Monitoring and Tracking Systems; PEMNET, Radimetrics and DoseWatch". United States. doi:10.1118/1.4957061.
@article{osti_22649405,
title = {SU-G-IeP3-12: Preliminary Report On the Experience of Patient Radiation Dose Monitoring and Tracking Systems; PEMNET, Radimetrics and DoseWatch},
author = {Lin, P and Corwin, F and Ghita, M},
abstractNote = {Purpose: Three patient radiation dose monitoring and tracking (PRDMT) systems have been in operation at this institution for the past 6 months. There are useful information that should be disseminated to those who are considering installation of PRDMT programs. In addition, there are “problems” uncovered in the process of estimating fluoroscopic “peak” skin dose (PSD), especially, for those patients who received interventional angiographic studies and in conjunction with surgical procedures. Methods: Upon exporting the PRDMT data to Microsoft Excel program, the peak skin dose can be estimated by applying various correction factors including; attenuation due to the tabletop and examination mattress, table height, tabletop translation, backscatter, etc. A procedure was established to screen and divide the PRDMT reported radiation dose and estimated PSD to three different levels of threshold to assess the potential skin injuries, to assist patient follow-up, risk management and provide radiation dosimetry information in case of “Sentinel Event”. Results: The Radiation Dose Structured Report (RDSR) was found to be the prerequisite for the PRDMT systems to work seamlessly. And, the geometrical parameters (gantry and table orientation) displayed by the equipment are not necessarily implemented in the “patient centric” manner which could result in a large error in the PSD estimation. Since, the PRDMT systems obtain their pertinent data from the DICOM tags including the polarity (+ and − signs), the geometrical parameters need to be verified. Conclusion: PRDMT systems provide a more accurate PSD estimation than previously possible as the air-kerma-area dose meter become widely implemented. However, care should be exercised to correctly apply the geometrical parameters in estimating the patient dose. In addition, further refinement is necessary for these software programs to account for all geometrical parameters such as the tabletop translation in the z-direction in particular.},
doi = {10.1118/1.4957061},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: Interventional radiology procedures involve the use of X-rays, which can pose a large radiation burden on both patients and staff. Although some reports on radiation dose are available, most studies focus on limited types of procedures and only report patient dose. In our cathlabs a dedicated real-time patient and staff monitoring system was installed in November 2015. The aim of this study was to investigate the patient and staff dose exposure for different types of interventions. Methods: Radiologists involved in fluoroscopy guided interventional radiology procedures wore personal dose meters (PDM, DoseAware, Philips) on their lead-apron that measured the personalmore » dose equivalent Hp(10), a measure for the effective dose (E). Furthermore, reference PDMs were installed in the C-arms of the fluoroscopy system (Allura XPer, Philips). Patient dose-area-product (DAP) and PDM doses were retrieved from the monitoring system (DoseWise, Philips) for each procedure. A total of 399 procedures performed between November 2015 and February 2016 were analyzed with respect to the type of intervention. Interventions were grouped by anatomy and radiologist position. Results: The mean DAP for the different types of interventions ranged from 2.86±2.96 Gycm{sup 2} (percutaneous gastrostomy) to 147±178 Gycm{sup 2} (aortic repair procedures). The radiologist dose (E) ranged from 5.39±7.38 µSv (cerebral interventions) to 84.7±106 µSv (abdominal interventions) and strongly correlated with DAP (R{sup 2}=0.83). The E normalized to DAP showed that the relative radiologist dose was higher for interventions in larger body parts (e.g. abdomen) compared to smaller body parts (e.g. head). Conclusion: Using a real-time dose monitoring system we were able to assess the staff and patient dose revealing that the relative staff dose strongly depended on the type of procedure and patient anatomy. This could be explained by the position of the radiologist with respect to the patient and X-ray tube. To facilitate this study L Vergoossen received a scholarship from Philips Medical Systems.« less
  • A new radiodiagnosis device that permits a 60% dose reduction but gives roentgenograms with detail comparable to that obtained with conventional x-ray machines is described. It is transistorized and operates on batteries, which when combined with normal 110- to 220-v supply, has a capacity of up to 200 r/2 hr. Lung pictures can be obtained at a distance of 150 cm with a 0.06-sec exposure and vertebral films with 2.5 sec. The 16-v battery permits x-ray intensities of 60 to 90 kv to be obtained at low current (10 to 25 ma). In spinal roentgenograms, film blackening and contrast weremore » identical when this device operated, and comparison was made with a conventional device. It is suggested that this apparatus would be useful for military field operations and other conditions where high-voltage power is not feasible. (BBB)« less
  • Purpose: To investigate the use of EPID transit dosimetry for monitoring daily dose variations in radiation treatment delivery. Methods: A patient with head and neck cancer treated using nine field IMRT beams was used in this study. The prescription was 45 Gy in 25 fractions. A KV CBCT was acquired before each treatment on a Varian NTX linear accelerator. Integrated images using MV EPID were acquired for each treatment beam. Planning CT images, treatment plan, and daily integrated images were imported into a commercial QA software Dosimetry Check (v4r4 Math Resolutions, LLC, Columbia, MD) to calculate 3D dose of themore » day assuming 25 fractions treatment. Planning CT images were deformed and registered to each daily CBCT using Varian SmartAdapt (v11.MR2). ROIs were then propagated from planning CT to daily CBCT. The correlation between maximum, average dose of ROIs and ROI volume, center of mass shift, Dice Similarity Coefficient (DSC) were investigated. Results: Not all parameters investigated showed strong correlations. For PTV and CTV, the average dose has inverse correlation with their volume change (correlation coefficient −0.52, −0.50, respectively) and DSC (−0.59, −0.59, respectively). The average dose of right parotid has correlation with its volume change (0.56). The maximum dose of spinal cord has correlation with the center of mass superior-inferior shift (0.52) and inverse correlation with the center of mass anterior-posterior shift (−0.73). Conclusion: Transit dosimetry using EPID images collected during treatment delivery offers great potential to monitor daily dose variations due to patient anatomy change, motion, and setup errors in radiation treatment delivery. It can provide a patient-specific QA tool valuable for adaptive radiation therapy. Further work is needed to validate the technique.« less
  • Purpose: In radiation therapy there is a need to accurately know the location of the target in real time. A novel radioactive tracking technology has been developed to answer this need. The technology consists of a radioactive implanted fiducial marker designed to minimize migration and a linac mounted tracking device. This study measured the static and dynamic accuracy of the new tracking technology in a clinical radiation therapy environment. Methods and Materials: The tracking device was installed on the linac gantry. The radioactive marker was located in a tissue equivalent phantom. Marker location was measured simultaneously by the radioactive trackingmore » system and by a Microscribe G2 coordinate measuring machine (certified spatial accuracy of 0.38 mm). Localization consistency throughout a volume and absolute accuracy in the Fixed coordinate system were measured at multiple gantry angles over volumes of at least 10 cm in diameter centered at isocenter. Dynamic accuracy was measured with the marker located inside a breathing phantom. Results: The mean consistency for the static source was 0.58 mm throughout the tested region at all measured gantry angles. The mean absolute position error in the Fixed coordinate system for all gantry angles was 0.97 mm. The mean real-time tracking error for the dynamic source within the breathing phantom was less than 1 mm. Conclusions: This novel radioactive tracking technology has the potential to be useful in accurate target localization and real-time monitoring for radiation therapy.« less
  • Purpose: To investigate the effects of image receptor technology and dose reduction software on radiation dose estimates for most frequently performed fluoroscopically-guided interventional (FGI) procedures at a tertiary health care center. Methods: IRB approval was obtained for retrospective analysis of FGI procedures performed in the interventional radiology suites between January-2011 and December-2015. This included procedures performed using image-intensifier (II) based systems which were subsequently replaced, flat-panel-detector (FPD) based systems which were later upgraded with ClarityIQ dose reduction software (Philips Healthcare) and relatively new FPD system already equipped with ClarityIQ. Post procedure, technologists entered system-reported cumulative air kerma (CAK) and kerma-areamore » product (KAP; only KAP for II based systems) in RIS; these values were analyzed. Data pre-processing included correcting typographical errors and cross-verifying CAK and KAP. The most frequent high and low dose FGI procedures were identified and corresponding CAK and KAP values were compared. Results: Out of 27,251 procedures within this time period, most frequent high and low dose procedures were chemo/immuno-embolization (n=1967) and abscess drainage (n=1821). Mean KAP for embolization and abscess drainage procedures were 260,657, 310,304 and 94,908 mGycm{sup 2}, and 14,497, 15,040 and 6307 mGycm{sup 2} using II-, FPD- and FPD with ClarityIQ- based systems, respectively. Statistically significant differences were observed in KAP values for embolization procedures with respect to different systems but for abscess drainage procedures significant differences were only noted between systems with FPD and FPD with ClarityIQ (p<0.05). Mean CAK reduced significantly from 823 to 308 mGy and from 43 to 21 mGy for embolization and abscess drainage procedures, respectively, in transitioning to FPD systems with ClarityIQ (p<0.05). Conclusion: While transitioning from II- to FPD- based systems was not associated with dose reduction for the most frequently performed FGI procedures, substantial dose reduction was noted with relatively newer systems and dose reduction software.« less