skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-G-IeP3-10: Molecular Imaging with Clinical X-Ray Sources and Compton Cameras

Abstract

Purpose: The application of Compton cameras (CC) is a novel approach translating XFCT to a practical modality realized with clinical CT systems without the restriction of pencil beams. The dual modality design offers additional information without extra patient dose. The purpose of this work is to investigate the feasibility and efficacy of using CCs for volumetric x-ray fluorescence (XF) imaging by Monte Carlo (MC) simulations and statistical image reconstruction. Methods: The feasibility of a CC for imaging x-ray fluorescence emitted from targeted lesions is examined by MC simulations. 3 mm diameter water spheres with various gold concentrations and detector distances are placed inside the lung of an adult human phantom (MIRD) and are irradiated with both fan and cone-beam geometries. A sandwich design CC composed of Silicon and CdTe is used to image the gold nanoparticle distribution. The detection system comprises four 16×26 cm{sup 2} detector panels placed on the chest of a MIRD phantom. Constraints of energy-, spatial-resolution, clinical geometries and Doppler broadening are taken into account. Image reconstruction is performed with a list-mode MLEM algorithm with cone-projector on a GPU. Results: The comparison of reconstruction of cone- and fan-beam excitation shows that the spatial resolution is improved bymore » 23% for fan-beams with significantly decreased processing time. Cone-beam excitation increases scatter content disturbing quantification of lesions near the body surface. Spatial resolution and detectability limit in the center of the lung is 8.7 mm and 20 fM for 50 nm diameter gold nanoparticles at 20 mGy. Conclusion: The implementation of XFCT with a CC is a feasible method for molecular imaging with high atomic number probes. Given constrains of detector resolutions, Doppler broadening, and limited exposure dose, spatial resolutions comparable with PET and molecular sensitivities in the fM range are realizable with current detector technology.« less

Authors:
; ; ;  [1]
  1. Stanford University, Stanford, CA (United States)
Publication Date:
OSTI Identifier:
22649403
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; 61 RADIATION PROTECTION AND DOSIMETRY; 60 APPLIED LIFE SCIENCES; BIOMEDICAL RADIOGRAPHY; CADMIUM TELLURIDES; CAMERAS; GOLD; IMAGE PROCESSING; MONTE CARLO METHOD; NANOPARTICLES; POSITRON COMPUTED TOMOGRAPHY; SPATIAL RESOLUTION; X-RAY SOURCES

Citation Formats

Vernekohl, D, Ahmad, M, Chinn, G, and Xing, L. SU-G-IeP3-10: Molecular Imaging with Clinical X-Ray Sources and Compton Cameras. United States: N. p., 2016. Web. doi:10.1118/1.4957059.
Vernekohl, D, Ahmad, M, Chinn, G, & Xing, L. SU-G-IeP3-10: Molecular Imaging with Clinical X-Ray Sources and Compton Cameras. United States. doi:10.1118/1.4957059.
Vernekohl, D, Ahmad, M, Chinn, G, and Xing, L. 2016. "SU-G-IeP3-10: Molecular Imaging with Clinical X-Ray Sources and Compton Cameras". United States. doi:10.1118/1.4957059.
@article{osti_22649403,
title = {SU-G-IeP3-10: Molecular Imaging with Clinical X-Ray Sources and Compton Cameras},
author = {Vernekohl, D and Ahmad, M and Chinn, G and Xing, L},
abstractNote = {Purpose: The application of Compton cameras (CC) is a novel approach translating XFCT to a practical modality realized with clinical CT systems without the restriction of pencil beams. The dual modality design offers additional information without extra patient dose. The purpose of this work is to investigate the feasibility and efficacy of using CCs for volumetric x-ray fluorescence (XF) imaging by Monte Carlo (MC) simulations and statistical image reconstruction. Methods: The feasibility of a CC for imaging x-ray fluorescence emitted from targeted lesions is examined by MC simulations. 3 mm diameter water spheres with various gold concentrations and detector distances are placed inside the lung of an adult human phantom (MIRD) and are irradiated with both fan and cone-beam geometries. A sandwich design CC composed of Silicon and CdTe is used to image the gold nanoparticle distribution. The detection system comprises four 16×26 cm{sup 2} detector panels placed on the chest of a MIRD phantom. Constraints of energy-, spatial-resolution, clinical geometries and Doppler broadening are taken into account. Image reconstruction is performed with a list-mode MLEM algorithm with cone-projector on a GPU. Results: The comparison of reconstruction of cone- and fan-beam excitation shows that the spatial resolution is improved by 23% for fan-beams with significantly decreased processing time. Cone-beam excitation increases scatter content disturbing quantification of lesions near the body surface. Spatial resolution and detectability limit in the center of the lung is 8.7 mm and 20 fM for 50 nm diameter gold nanoparticles at 20 mGy. Conclusion: The implementation of XFCT with a CC is a feasible method for molecular imaging with high atomic number probes. Given constrains of detector resolutions, Doppler broadening, and limited exposure dose, spatial resolutions comparable with PET and molecular sensitivities in the fM range are realizable with current detector technology.},
doi = {10.1118/1.4957059},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: To demonstrate the ability to perform high-resolution imaging and quantification of sparse distributions of gold nanoparticles (GNPs) within ex vivo tumor samples using a highly-sensitive benchtop L-shell x-ray fluorescence (XRF) imaging system. Methods: An optimized L-shell XRF imaging system was assembled using a tungsten-target x-ray source (operated at 62 kVp and 45 mA). The x-rays were filtered (copper: 0.08 mm & aluminum: 0.04 mm) and collimated (lead: 5 cm thickness, 3 cm aperture diameter) into a cone-beam in order to irradiate small samples or objects. A collimated (stainless steel: 4 cm thickness, 2 mm aperture diameter) silicon drift detector,more » capable of 2D translation, was placed at 90° with respect to the beam to acquire XRF/scatter spectra from regions of interest. Spectral processing involved extracting XRF signal from background, followed by attenuation correction using a Compton scatter-based normalization algorithm. Calibration phantoms with water/GNPs (0 and 0.00001–10 mg/cm{sup 3}) were used to determine the detection limit of the system at a 10-second acquisition time. The system was then used to map the distribution of GNPs within a 12×11×2 mm{sup 3} slice excised from the center of a GNP-loaded ex vivo murine tumor sample; a total of 110 voxels (2.65×10{sup −3} cm{sup 3}) were imaged with 1.3-mm spatial resolution. Results: The detection limit of the current cone-beam benchtop L-shell XRF system was 0.003 mg/cm{sup 3} (3 ppm). Intratumoral GNP concentrations ranging from 0.003 mg/cm{sup 3} (3 ppm) to a maximum of 0.055 mg/cm{sup 3} (55 ppm) and average of 0.0093 mg/cm{sup 3} (9.3 ppm) were imaged successfully within the ex vivo tumor slice. Conclusion: The developed cone-beam benchtop L-shell XRF imaging system can immediately be used for imaging of ex vivo tumor samples containing low concentrations of GNPs. With minor finetuning/optimization, the system can be directly adapted for performing routine preclinical in vivo imaging tasks. Supported by NIH/NCI grant R01CA155446 This investigation was supported by NIH/NCI grant R01CA155446.« less
  • Purpose: Evaluation of a prototype Compton camera (CC) for imaging prompt gamma rays (PG) emitted during clinical proton beam irradiation for in vivo beam range verification. Methods: We irradiated a water phantom with 114 MeV and 150 MeV proton pencil beams at clinical beam currents ranging from 1 nA up to 5 nA. The CC was placed 15 cm from the beam central axis and PGs from 0.2 MeV up to 6.5 MeV were measured during irradiation. From the measured data, 2-dimensional (2D) PG images were reconstructed. One-dimensional (1D) profiles from the PG images were compared to measured depth dosemore » curves. Results: The CC was able to measure PG emission during delivery of both a single 150 MeV pencil beam and a 5 cm x 5 cm mono-energetic layer of 114 MeV pencil beams. From the 2D images, a strong correlation was seen between the depth of the distal falloff of PG emission and the Bragg peak (BP). 1D profiles extracted from the PG images show that the distal 60% falloff of the PG emission lined up well with the distal 90% of the BP. Shifts as small as 3 mm in the beam range could be detected on both the 2D PG images and 1D profiles with an uncertainty of 1.5 mm. With the current CC prototype, a minimum dose delivery of 400 cGy was required to produce usable PG images. Conclusions: It was possible to measure and image PG emission with our prototype CC during proton beam delivery and to detect shifts in the BP range in the images. Therefore prompt gamma imaging with a CC for the purpose of in vivo range verification is feasible. However, for the studied system improvements in detector efficiency and reconstruction algorithms are necessary to make it clinically viable.« less
  • Purpose: Deconvolution is a widely used tool in the field of image reconstruction algorithm when the linear imaging system has been blurred by the imperfect system transfer function. However, due to the nature of Gaussian-liked distribution for point spread function (PSF), the components with coherent high frequency in the image are hard to restored in most of the previous scanning imaging system, even the relatively accurate PSF is acquired. We propose a novel method for deconvolution of images which are obtained by using shape-modulated PSF. Methods: We use two different types of PSF - Gaussian shape and donut shape -more » to convolute the original image in order to simulate the process of scanning imaging. By employing deconvolution of the two images with corresponding given priors, the image quality of the deblurred images are compared. Then we find the critical size of the donut shape compared with the Gaussian shape which has similar deconvolution results. Through calculation of tightened focusing process using radially polarized beam, such size of donut is achievable under same conditions. Results: The effects of different relative size of donut and Gaussian shapes are investigated. When the full width at half maximum (FWHM) ratio of donut and Gaussian shape is set about 1.83, similar resolution results are obtained through our deconvolution method. Decreasing the size of donut will favor the deconvolution method. A mask with both amplitude and phase modulation is used to create a donut-shaped PSF compared with the non-modulated Gaussian PSF. Donut with size smaller than our critical value is obtained. Conclusion: The utility of donutshaped PSF are proved useful and achievable in the imaging and deconvolution processing, which is expected to have potential practical applications in high resolution imaging for biological samples.« less
  • Purpose: To create 4D parametric images using biplane Digital Subtraction Angiography (DSA) sequences co-registered with the 3D vascular geometry obtained from Cone Beam-CT (CBCT). Methods: We investigated a method to derive multiple 4D Parametric Imaging (PI) maps using only one CBCT acquisition. During this procedure a 3D-DSA geometry is stored and used subsequently for all 4D images. Each time a biplane DSA is acquired, we calculate 2D parametric maps of Bolus Arrival Time (BAT), Mean Transit Time (MTT) and Time to Peak (TTP). Arterial segments which are nearly parallel with one of the biplane imaging planes in the 2D parametricmore » maps are co-registered with the 3D geometry. The values in the remaining vascular network are found using spline interpolation since the points chosen for co-registration on the vasculature are discrete and remaining regions need to be interpolated. To evaluate the method we used a patient CT volume data set for 3D printing a neurovascular phantom containing a complete Circle of Willis. We connected the phantom to a flow loop with a peristaltic pump, simulating physiological flow conditions. Contrast media was injected with an automatic injector at 10 ml/sec. Images were acquired with a Toshiba Infinix C-arm and 4D parametric image maps of the vasculature were calculated. Results: 4D BAT, MTT, and TTP parametric image maps of the Circle of Willis were derived. We generated color-coded 3D geometries which avoided artifacts due to vessel overlap or foreshortening in the projection direction. Conclusion: The software was tested successfully and multiple 4D parametric images were obtained from biplane DSA sequences without the need to acquire additional 3D-DSA runs. This can benefit the patient by reducing the contrast media and the radiation dose normally associated with these procedures. Partial support from NIH Grant R01-EB002873 and Toshiba Medical Systems Corp.« less
  • Purpose: To correlate changes in 2-deoxy-2-[18F]fluoro-D-glucose (18-FDG) positron emission tomography (PET) (18-FDG-PET) uptake with response and disease-free survival with combined modality neoadjuvant therapy in patients with locally advanced rectal cancer. Methods and Materials: Charts were reviewed for consecutive patients with ultrasound-staged T3x to T4Nx or TxN1 rectal adenocarcinoma who underwent preoperative chemoradiation therapy at Fox Chase Cancer Center (FCCC) or Robert H. Lurie Comprehensive Cancer Center of Northwestern University with 18-FDG-PET scanning before and after combined-modality neoadjuvant chemoradiation therapy . The maximum standardized uptake value (SUV) was measured from the tumor before and 3 to 4 weeks after completion ofmore » chemoradiation therapy preoperatively. Logistic regression was used to analyze the association of pretreatment SUV, posttreatment SUV, and % SUV decrease on pathologic complete response (pCR), and a Cox model was fitted to analyze disease-free survival. Results: A total of 53 patients (FCCC, n = 41, RLCCC, n = 12) underwent pre- and postchemoradiation PET scanning between September 2000 and June 2006. The pCR rate was 31%. Univariate analysis revealed that % SUV decrease showed a marginally trend in predicting pCR (p = 0.08). In the multivariable analysis, posttreatment SUV was shown a predictor of pCR (p = 0.07), but the test results did not reach statistical significance. None of the investigated variables were predictive of disease-free survival. Conclusions: A trend was observed for % SUV decrease and posttreatment SUV predicting pCR in patients with rectal cancer treated with preoperative chemoradiation therapy. Further prospective study with a larger sample size is warranted to better characterize the role of 18-FDG-PET for response prediction in patients with rectal cancer.« less