skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-G-JeP1-11: Feasibility Study of Markerless Tracking Using Dual Energy Fluoroscopic Images for Real-Time Tumor-Tracking Radiotherapy System

Abstract

Purpose: The new real-time tumor-tracking radiotherapy (RTRT) system was installed in our institution. This system consists of two x-ray tubes and color image intensifiers (I.I.s). The fiducial marker which was implanted near the tumor was tracked using color fluoroscopic images. However, the implantation of the fiducial marker is very invasive. Color fluoroscopic images enable to increase the recognition of the tumor. However, these images were not suitable to track the tumor without fiducial marker. The purpose of this study was to investigate the feasibility of markerless tracking using dual energy colored fluoroscopic images for real-time tumor-tracking radiotherapy system. Methods: The colored fluoroscopic images of static and moving phantom that had the simulated tumor (30 mm diameter sphere) were experimentally acquired using the RTRT system. The programmable respiratory motion phantom was driven using the sinusoidal pattern in cranio-caudal direction (Amplitude: 20 mm, Time: 4 s). The x-ray condition was set to 55 kV, 50 mA and 105 kV, 50 mA for low energy and high energy, respectively. Dual energy images were calculated based on the weighted logarithmic subtraction of high and low energy images of RGB images. The usefulness of dual energy imaging for real-time tracking with an automated template imagemore » matching algorithm was investigated. Results: Our proposed dual energy subtraction improve the contrast between tumor and background to suppress the bone structure. For static phantom, our results showed that high tracking accuracy using dual energy subtraction images. For moving phantom, our results showed that good tracking accuracy using dual energy subtraction images. However, tracking accuracy was dependent on tumor position, tumor size and x-ray conditions. Conclusion: We indicated that feasibility of markerless tracking using dual energy fluoroscopic images for real-time tumor-tracking radiotherapy system. Furthermore, it is needed to investigate the tracking accuracy using proposed dual energy subtraction images for clinical cases.« less

Authors:
;  [1];  [2]; ; ; ;  [3]
  1. Yamaguchi University, Ube, Yamaguchi (Japan)
  2. Kyoto college of medical science, Nantan, Kyoto (Japan)
  3. Yamaguchi University Hospital, Ube, Yamaguchi (Japan)
Publication Date:
OSTI Identifier:
22649336
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ACCURACY; BIOMEDICAL RADIOGRAPHY; COLOR; FEASIBILITY STUDIES; FIDUCIAL MARKERS; IMAGE INTENSIFIERS; NEOPLASMS; PARTICLE TRACKS; PHANTOMS; RADIOTHERAPY; X RADIATION; X-RAY TUBES

Citation Formats

Shiinoki, T, Shibuya, K, Sawada, A, Uehara, T, Yuasa, Y, Koike, M, and Kawamura, S. SU-G-JeP1-11: Feasibility Study of Markerless Tracking Using Dual Energy Fluoroscopic Images for Real-Time Tumor-Tracking Radiotherapy System. United States: N. p., 2016. Web. doi:10.1118/1.4956986.
Shiinoki, T, Shibuya, K, Sawada, A, Uehara, T, Yuasa, Y, Koike, M, & Kawamura, S. SU-G-JeP1-11: Feasibility Study of Markerless Tracking Using Dual Energy Fluoroscopic Images for Real-Time Tumor-Tracking Radiotherapy System. United States. doi:10.1118/1.4956986.
Shiinoki, T, Shibuya, K, Sawada, A, Uehara, T, Yuasa, Y, Koike, M, and Kawamura, S. 2016. "SU-G-JeP1-11: Feasibility Study of Markerless Tracking Using Dual Energy Fluoroscopic Images for Real-Time Tumor-Tracking Radiotherapy System". United States. doi:10.1118/1.4956986.
@article{osti_22649336,
title = {SU-G-JeP1-11: Feasibility Study of Markerless Tracking Using Dual Energy Fluoroscopic Images for Real-Time Tumor-Tracking Radiotherapy System},
author = {Shiinoki, T and Shibuya, K and Sawada, A and Uehara, T and Yuasa, Y and Koike, M and Kawamura, S},
abstractNote = {Purpose: The new real-time tumor-tracking radiotherapy (RTRT) system was installed in our institution. This system consists of two x-ray tubes and color image intensifiers (I.I.s). The fiducial marker which was implanted near the tumor was tracked using color fluoroscopic images. However, the implantation of the fiducial marker is very invasive. Color fluoroscopic images enable to increase the recognition of the tumor. However, these images were not suitable to track the tumor without fiducial marker. The purpose of this study was to investigate the feasibility of markerless tracking using dual energy colored fluoroscopic images for real-time tumor-tracking radiotherapy system. Methods: The colored fluoroscopic images of static and moving phantom that had the simulated tumor (30 mm diameter sphere) were experimentally acquired using the RTRT system. The programmable respiratory motion phantom was driven using the sinusoidal pattern in cranio-caudal direction (Amplitude: 20 mm, Time: 4 s). The x-ray condition was set to 55 kV, 50 mA and 105 kV, 50 mA for low energy and high energy, respectively. Dual energy images were calculated based on the weighted logarithmic subtraction of high and low energy images of RGB images. The usefulness of dual energy imaging for real-time tracking with an automated template image matching algorithm was investigated. Results: Our proposed dual energy subtraction improve the contrast between tumor and background to suppress the bone structure. For static phantom, our results showed that high tracking accuracy using dual energy subtraction images. For moving phantom, our results showed that good tracking accuracy using dual energy subtraction images. However, tracking accuracy was dependent on tumor position, tumor size and x-ray conditions. Conclusion: We indicated that feasibility of markerless tracking using dual energy fluoroscopic images for real-time tumor-tracking radiotherapy system. Furthermore, it is needed to investigate the tracking accuracy using proposed dual energy subtraction images for clinical cases.},
doi = {10.1118/1.4956986},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: The respirato ry gating system combined the TrueBeam and a new real-time tumor-tracking radiotherapy system (RTRT) was installed. The RTRT system consists of two x-ray tubes and color image intensifiers. Using fluoroscopic images, the fiducial marker which was implanted near the tumor was tracked and was used as the internal surrogate for respiratory gating. The purposes of this study was to develop the verification technique of the respiratory gating with the new RTRT using cine electronic portal image device images (EPIDs) of TrueBeam and log files of the RTRT. Methods: A patient who underwent respiratory gated SBRT of themore » lung using the RTRT were enrolled in this study. For a patient, the log files of three-dimensional coordinate of fiducial marker used as an internal surrogate were acquired using the RTRT. Simultaneously, the cine EPIDs were acquired during respiratory gated radiotherapy. The data acquisition was performed for one field at five sessions during the course of SBRT. The residual motion errors were calculated using the log files (E{sub log}). The fiducial marker used as an internal surrogate into the cine EPIDs was automatically extracted by in-house software based on the template-matching algorithm. The differences between the the marker positions of cine EPIDs and digitally reconstructed radiograph were calculated (E{sub EPID}). Results: Marker detection on EPID using in-house software was influenced by low image contrast. For one field during the course of SBRT, the respiratory gating using the RTRT showed the mean ± S.D. of 95{sup th} percentile E{sub EPID} were 1.3 ± 0.3 mm,1.1 ± 0.5 mm,and those of E{sub log} were 1.5 ± 0.2 mm, 1.1 ± 0.2 mm in LR and SI directions, respectively. Conclusion: We have developed the verification method of respiratory gating combined TrueBeam and new real-time tumor-tracking radiotherapy system using EPIDs and log files.« less
  • Purpose: To evaluate the feasibility of markerless tumor tracking through the implementation of a novel dual-energy imaging approach into the clinical dynamic tracking (DT) workflow of the Vero SBRT system. Methods: Two sequential 20 s (11 Hz) fluoroscopy sequences were acquired at the start of one fraction for 7 patients treated for primary and metastatic lung cancer with DT on the Vero system. Sequences were acquired using 2 on-board kV imaging systems located at ±45° from the MV beam axis, at respectively 60 kVp (3.2 mAs) and 120 kVp (2.0 mAs). Offline, a normalized cross-correlation algorithm was applied to matchmore » the high (HE) and low energy (LE) images. Per breathing phase (inhale, exhale, maximum inhale and maximum exhale), the 5 best-matching HE and LE couples were extracted for DE subtraction. A contrast analysis according to gross tumor volume was conducted based on contrast-to-noise ratio (CNR). Improved tumor visibility was quantified using an improvement ratio. Results: Using the implanted fiducial as a benchmark, HE-LE sequence matching was effective for 13 out of 14 imaging angles. Overlying bony anatomy was removed on all DE images. With the exception of two imaging angles, the DE images showed no significantly improved tumor visibility compared to HE images, with an improvement ratio averaged over all patients of 1.46 ± 1.64. Qualitatively, it was observed that for those imaging angles that showed no significantly improved CNR, the tumor tissue could not be reliably visualized on neither HE nor DE images due to a total or partial overlap with other soft tissue. Conclusion: Dual-energy subtraction imaging by sequential orthogonal fluoroscopy was shown feasible by implementing an additional LE fluoroscopy sequence. However, for most imaging angles, DE images did not provide improved tumor visibility over single-energy images. Optimizing imaging angles is likely to improve tumor visibility and the efficacy of dual-energy imaging. This work was in part sponsored by corporate funding from BrainLAB AG.(BrainLAB AG, Feldkirchen, Germany)« less
  • Purpose: A Tomo-Cinegraphy (TC) is a method to generate a series of temporal tomographic images from projection images of the on-board imager (OBI) while gantry is moving. It is to test if this technique is useful to determine a lung tumor position during treatments. Methods: Tomographic image via background subtraction, TIBS uses a priori anatomical information from a previous CT scan to isolate a SOI from a planar kV image by factoring out the attenuations by tissues outside the SOI (background). This idea was extended to a TC, which enables to generate tomographic images of same geometry from the projectionmore » of different gantry angles and different breathing phases. Projection images of a lung patient for CBCT acquisition are used to generate TC images. A region of interest (ROI) is selected around a tumor adding 2cm margins. Center of mass (COM) of the ROI is traced to determine tumor position for every projection images. Results: Tumor is visible in the TC images while the OBI projections are not. The coordinates of the COMs represent the temporal tumor positions. While, it is not possible to trace the tumor motion using the projection images. A source of time delay is the time to acquire projection images, which is always less than a second. Conclusion: TC allows tracking the tumor positions without fiducial markers in real time for some lung patients, if the projection images are acquired during treatments. Partially supported by NIH R01CA133539.« less
  • Purpose: Real-time, markerless localization of lung tumors with kV imaging is often inhibited by ribs obscuring the tumor and poor soft-tissue contrast. This study investigates the use of dual-energy imaging, which can generate radiographs with reduced bone visibility, to enhance automated lung tumor tracking for real-time adaptive radiotherapy. Methods: kV images of an anthropomorphic breathing chest phantom were experimentally acquired and radiographs of actual lung cancer patients were Monte-Carlo-simulated at three imaging settings: low-energy (70 kVp, 1.5 mAs), high-energy (140 kVp, 2.5 mAs, 1 mm additional tin filtration), and clinical (120 kVp, 0.25 mAs). Regular dual-energy images were calculated bymore » weighted logarithmic subtraction of high- and low-energy images and filter-free dual-energy images were generated from clinical and low-energy radiographs. The weighting factor to calculate the dual-energy images was determined by means of a novel objective score. The usefulness of dual-energy imaging for real-time tracking with an automated template matching algorithm was investigated. Results: Regular dual-energy imaging was able to increase tracking accuracy in left–right images of the anthropomorphic phantom as well as in 7 out of 24 investigated patient cases. Tracking accuracy remained comparable in three cases and decreased in five cases. Filter-free dual-energy imaging was only able to increase accuracy in 2 out of 24 cases. In four cases no change in accuracy was observed and tracking accuracy worsened in nine cases. In 9 out of 24 cases, it was not possible to define a tracking template due to poor soft-tissue contrast regardless of input images. The mean localization errors using clinical, regular dual-energy, and filter-free dual-energy radiographs were 3.85, 3.32, and 5.24 mm, respectively. Tracking success was dependent on tumor position, tumor size, imaging beam angle, and patient size. Conclusions: This study has highlighted the influence of patient anatomy on the success rate of real-time markerless tumor tracking using dual-energy imaging. Additionally, the importance of the spectral separation of the imaging beams used to generate the dual-energy images has been shown.« less
  • Purpose: To detect target position on kV X-ray fluoroscopic images using a feature-based tracking algorithm, Accelerated-KAZE (AKAZE), for markerless real-time tumor tracking (RTTT). Methods: Twelve lung cancer patients treated with RTTT on the Vero4DRT (Mitsubishi Heavy Industries, Japan, and Brainlab AG, Feldkirchen, Germany) were enrolled in this study. Respiratory tumor movement was greater than 10 mm. Three to five fiducial markers were implanted around the lung tumor transbronchially for each patient. Before beam delivery, external infrared (IR) markers and the fiducial markers were monitored for 20 to 40 s with the IR camera every 16.7 ms and with an orthogonalmore » kV x-ray imaging subsystem every 80 or 160 ms, respectively. Target positions derived from the fiducial markers were determined on the orthogonal kV x-ray images, which were used as the ground truth in this study. Meanwhile, tracking positions were identified by AKAZE. Among a lot of feature points, AKAZE found high-quality feature points through sequential cross-check and distance-check between two consecutive images. Then, these 2D positional data were converted to the 3D positional data by a transformation matrix with a predefined calibration parameter. Root mean square error (RMSE) was calculated to evaluate the difference between 3D tracking and target positions. A total of 393 frames was analyzed. The experiment was conducted on a personal computer with 16 GB RAM, Intel Core i7-2600, 3.4 GHz processor. Results: Reproducibility of the target position during the same respiratory phase was 0.6 +/− 0.6 mm (range, 0.1–3.3 mm). Mean +/− SD of the RMSEs was 0.3 +/− 0.2 mm (range, 0.0–1.0 mm). Median computation time per frame was 179 msec (range, 154–247 msec). Conclusion: AKAZE successfully and quickly detected the target position on kV X-ray fluoroscopic images. Initial results indicate that the differences between 3D tracking and target position would be clinically acceptable.« less