skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-G-BRB-17: Dosimetric Evaluation of the Respiratory Interplay Effect During VMAT Delivery Using IPAGAT Polymer Gel Dosimeter

Abstract

Purpose: To evaluate the dosimetric impact of the interplay effect between multileaf collimator (MLC) movement and tumor respiratory motion during delivery of volumetric modulate arc therapy (VMAT) by using customized polymer gel dosimeter. Methods: Polyacrylamide-based gel dosimeter contained magnesium chloride as a sensitizer (iPAGAT) was used in this study. An excellent gas barrier PAN (BAREX) techno bottle (φ8 cm, 650 mL) filled with iPAGAT was set to the QUASAR™ respiratory motion phantom, and was moved with motion amplitudes of 1 and 2 cm with a 4 second period during VMAT delivery by the Novalis Tx linear accelerator (Varian/BrainLAB). Two spherical tumors with a 2 cm diameter (GTV1 and GTV2) were defined, and ITV1 (GTV1+1 cm) and ITV2 (GTV2+2 cm) with expansion in the superior-inferior (S-I) direction were also defined with simulated respiratory motion. PTV margin was 2 mm around the ITV considering the setup uncertainty. Two single arc VMAT plans with 30 Gy at 3 Gy per fraction (GTV: D98>100%, PTV: D95=100%) were generated by the Varian Eclipse treatment planning system. Three-dimensional dose distribution in iPAGAT was read out by the Signa 1.5T MRI system (GE), and was evaluated by dose-volume histogram (DVH) using in-house developed software. Results: According tomore » DVH analysis by iPAGAT, D98 of GTV1 and GTV2 were more than 100% of the prescribed dose. In contrast, D95 of PTV1 and PTV2 were about 85% and 65%, respectively. Furthermore, low-to-intermediate dose was widespread with motion amplitude of 2 cm. Conclusion: DVH analysis using iPAGAT polymer gel dosimeter was performed in this study. As a result, interplay effect was negligible, since dose coverage of GTV was sufficient during VMAT delivery with simulated respiratory motion. However, the dose reduction of PTV and the spread of low-to-intermediate dose compared to the planned dose require scrupulous attention for large tumor respiratory motion.« less

Authors:
; ; ;  [1];  [2];  [3];  [4]
  1. Hiroshima Heiwa Clinic, Hiroshima, JP (Japan)
  2. Hiroshima International University, Hiroshima, JP (Japan)
  3. Hiroshima University Hospital, Hiroshima, JP (Japan)
  4. R-TECH.INC, Tokyo, JP (Japan)
Publication Date:
OSTI Identifier:
22649288
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; COMPUTER CODES; DELIVERY; DOSEMETERS; GELS; LINEAR ACCELERATORS; MAGNESIUM CHLORIDES; NEOPLASMS; NMR IMAGING; POLYMERS; RADIATION DOSE DISTRIBUTIONS; RADIOTHERAPY; THREE-DIMENSIONAL CALCULATIONS

Citation Formats

Ono, K, Fujimoto, S, Akagi, Y, Hirokawa, Y, Hayashi, S, Hioki, K, and Miyazawa, M. SU-G-BRB-17: Dosimetric Evaluation of the Respiratory Interplay Effect During VMAT Delivery Using IPAGAT Polymer Gel Dosimeter. United States: N. p., 2016. Web. doi:10.1118/1.4956924.
Ono, K, Fujimoto, S, Akagi, Y, Hirokawa, Y, Hayashi, S, Hioki, K, & Miyazawa, M. SU-G-BRB-17: Dosimetric Evaluation of the Respiratory Interplay Effect During VMAT Delivery Using IPAGAT Polymer Gel Dosimeter. United States. doi:10.1118/1.4956924.
Ono, K, Fujimoto, S, Akagi, Y, Hirokawa, Y, Hayashi, S, Hioki, K, and Miyazawa, M. 2016. "SU-G-BRB-17: Dosimetric Evaluation of the Respiratory Interplay Effect During VMAT Delivery Using IPAGAT Polymer Gel Dosimeter". United States. doi:10.1118/1.4956924.
@article{osti_22649288,
title = {SU-G-BRB-17: Dosimetric Evaluation of the Respiratory Interplay Effect During VMAT Delivery Using IPAGAT Polymer Gel Dosimeter},
author = {Ono, K and Fujimoto, S and Akagi, Y and Hirokawa, Y and Hayashi, S and Hioki, K and Miyazawa, M},
abstractNote = {Purpose: To evaluate the dosimetric impact of the interplay effect between multileaf collimator (MLC) movement and tumor respiratory motion during delivery of volumetric modulate arc therapy (VMAT) by using customized polymer gel dosimeter. Methods: Polyacrylamide-based gel dosimeter contained magnesium chloride as a sensitizer (iPAGAT) was used in this study. An excellent gas barrier PAN (BAREX) techno bottle (φ8 cm, 650 mL) filled with iPAGAT was set to the QUASAR™ respiratory motion phantom, and was moved with motion amplitudes of 1 and 2 cm with a 4 second period during VMAT delivery by the Novalis Tx linear accelerator (Varian/BrainLAB). Two spherical tumors with a 2 cm diameter (GTV1 and GTV2) were defined, and ITV1 (GTV1+1 cm) and ITV2 (GTV2+2 cm) with expansion in the superior-inferior (S-I) direction were also defined with simulated respiratory motion. PTV margin was 2 mm around the ITV considering the setup uncertainty. Two single arc VMAT plans with 30 Gy at 3 Gy per fraction (GTV: D98>100%, PTV: D95=100%) were generated by the Varian Eclipse treatment planning system. Three-dimensional dose distribution in iPAGAT was read out by the Signa 1.5T MRI system (GE), and was evaluated by dose-volume histogram (DVH) using in-house developed software. Results: According to DVH analysis by iPAGAT, D98 of GTV1 and GTV2 were more than 100% of the prescribed dose. In contrast, D95 of PTV1 and PTV2 were about 85% and 65%, respectively. Furthermore, low-to-intermediate dose was widespread with motion amplitude of 2 cm. Conclusion: DVH analysis using iPAGAT polymer gel dosimeter was performed in this study. As a result, interplay effect was negligible, since dose coverage of GTV was sufficient during VMAT delivery with simulated respiratory motion. However, the dose reduction of PTV and the spread of low-to-intermediate dose compared to the planned dose require scrupulous attention for large tumor respiratory motion.},
doi = {10.1118/1.4956924},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: We investigated the dosimetric impact of the interplay effect during RapidArc stereotactic body radiation therapy for lung tumors using flattening filter-free (FFF) beams with different dose rates. Methods and Materials: Seven tumors with motion ≤20 mm, treated with 10-MV FFF RapidArc, were analyzed. A programmable phantom with sinusoidal longitudinal motion (30-mm diameter “tumor” insert; period = 5 s; individualized amplitude from planning 4-dimensional computed tomography) was used for dynamic dose measurements. Measurements were made with GafChromic EBT III films. Plans delivered the prescribed dose to 95% of the planning target volume, created by a 5-mm expansion of the internalmore » target volume. They comprised 2 arcs and maximum dose rates of 400 and 2400 MU/min. For 2400 MU/min plans, measurements were repeated at 3 different initial breathing phases to model interplay over 2 to 3 fractions. For 3 cases, 2 extra plans were created using 1 full rotational arc (with contralateral lung avoidance sector) and 1 partial arc of 224° to 244°. Dynamic and convolved static measurements were compared by use of gamma analysis of 3% dose difference and 1 mm distance-to-agreement. Results: For 2-arc 2400 MU/min plans, maximum dose deviation of 9.4% was found in a single arc; 7.4% for 2 arcs (single fraction) and <5% and 3% when measurements made at 2 and 3 different initial breathing phases were combined, simulating 2 or 3 fractions. For all 7 cases, >99% of the area within the region of interest passed the gamma criteria when all 3 measurements with different initial phases were combined. Single-fraction single-arc plans showed higher dose deviations, which diminished when dose distributions were summed over 2 fractions. All 400 MU/min plans showed good agreement in a single fraction measurement. Conclusion: Under phantom conditions, single-arc and single-fraction 2400 MU/min FFF RapidArc lung stereotactic body radiation therapy is susceptible to interplay. Two arcs and ≥2 fractions reduced the effect to a level that appeared unlikely to be clinically significant.« less
  • Purpose: Volumetric modulated arc therapy (VMAT) with gating capability has had increasing adoption in many clinics in the United States. In this new technique, dose rate, gantry rotation speed, and the leaf motion speed of multileaf collimators (MLCs) are modulated dynamically during gated beam delivery to achieve highly conformal dose coverage of the target and normal tissue sparing. Compared with the traditional gated intensity-modulated radiation therapy technique, this complicated beam delivery technique may result in larger dose errors due to the intrafraction tumor motion. The purpose of this work is to evaluate the dosimetric influence of the interplay effect formore » the respiration-gated VMAT technique (RapidArc, Varian Medical Systems, Palo Alto, CA). Our work consisted of two parts: (1) Investigate the interplay effect for different target residual errors during gated RapidArc delivery using a one-dimensional moving phantom capable of producing stable sinusoidal movement; (2) Evaluate the dosimetric influence in ten clinical patients’ treatment plans using a moving phantom driven with a patient-specific respiratory curve. Methods: For the first part of this study, four plans were created with a spherical target for varying residual motion of 0.25, 0.5, 0.75, and 1.0 cm. Appropriate gating windows were applied for each. The dosimetric effect was evaluated using EDR2 film by comparing the gated delivery with static delivery. For the second part of the project, ten gated lung stereotactic body radiotherapy cases were selected and reoptimized to be delivered by the gated RapidArc technique. These plans were delivered to a phantom, and again the gated treatments were compared to static deliveries by the same methods. Results: For regular sinusoidal motion, the dose delivered to the target was not substantially affected by the gating windows when evaluated with the gamma statistics, suggesting the interplay effect has a small role in respiratory-gated RapidArc therapy. Varied results were seen when gated therapy was performed on the patient plans that could only be attributed to differences in patient respiratory patterns. Patients whose plans had the largest percentage of pixels failing the gamma statistics exhibited irregular breathing patterns including substantial interpatient variation in depth of respiration. Conclusions: The interplay effect has a limited impact on gated RapidArc therapy when evaluated with a linear phantom. Variations in patient breathing patterns, however, are of much greater clinical significance. Caution must be taken when evaluating patients’ respiratory efforts for gated arc therapy.« less
  • Purpose: Volumetric modulated arc therapy (VMAT) with gating capability has had increasing adoption in many clinics in the United States. In this new technique, dose rate, gantry rotation speed, and the leaf motion speed of multileaf collimators (MLCs) are modulated dynamically during gated beam delivery to achieve highly conformal dose coverage of the target and normal tissue sparing. Compared with the traditional gated intensity-modulated radiation therapy technique, this complicated beam delivery technique may result in larger dose errors due to the intrafraction tumor motion. The purpose of this work is to evaluate the dosimetric influence of the interplay effect formore » the respiration-gated VMAT technique (RapidArc, Varian Medical Systems, Palo Alto, CA). Our work consisted of two parts: (1) Investigate the interplay effect for different target residual errors during gated RapidArc delivery using a one-dimensional moving phantom capable of producing stable sinusoidal movement; (2) Evaluate the dosimetric influence in ten clinical patients’ treatment plans using a moving phantom driven with a patient-specific respiratory curve. Methods: For the first part of this study, four plans were created with a spherical target for varying residual motion of 0.25, 0.5, 0.75, and 1.0 cm. Appropriate gating windows were applied for each. The dosimetric effect was evaluated using EDR2 film by comparing the gated delivery with static delivery. For the second part of the project, ten gated lung stereotactic body radiotherapy cases were selected and reoptimized to be delivered by the gated RapidArc technique. These plans were delivered to a phantom, and again the gated treatments were compared to static deliveries by the same methods. Results: For regular sinusoidal motion, the dose delivered to the target was not substantially affected by the gating windows when evaluated with the gamma statistics, suggesting the interplay effect has a small role in respiratory-gated RapidArc therapy. Varied results were seen when gated therapy was performed on the patient plans that could only be attributed to differences in patient respiratory patterns. Patients whose plans had the largest percentage of pixels failing the gamma statistics exhibited irregular breathing patterns including substantial interpatient variation in depth of respiration. Conclusions: The interplay effect has a limited impact on gated RapidArc therapy when evaluated with a linear phantom. Variations in patient breathing patterns, however, are of much greater clinical significance. Caution must be taken when evaluating patients’ respiratory efforts for gated arc therapy.« less
  • During a VMAT treatment delivery, the interplay effect between the moving target and varying machine parameters result in dose distributions that are different from those initially planned. In this work, we investigate this effect for lung SABR by using 4D dose calculation derived from the Varian TrueBeam trajectory log file. The impact of treatment start phase is also evaluated. A QUASAR™ respiratory motion phantom was scanned with motion amplitudes of 0.4, 1, 2 and 3 cm with a 4 second period. MIP and the average dataset were generated from the 4DCT. A static CT was also acquired with the tumormore » in its centre position. Plans were optimized with 10X FFF beam until PTV and fictitious critical structures met the dose constraints. Ten temporally interleaved plans were constructed with the temporal machine parameter information from the trajectory log file. Ten plans were calculated with isocentre shifts to simulate respiratory motion and then summed. For each motion amplitude, three separate sum plans were created with various phase shifts (no phase shift, maximum inhalation and maximum exhalation) to assess the impact of treatment start phase. For all the phase shifts investigated, the DVH for PTV demonstrated good dose coverage. However, a careful review of slice by slice plan comparison indicates dose “holes” are observed within PTV. The PTV dose difference between various treatment start phases can be as high as 19%. This assumes all treatment fractions have identical treatment start phase. Our future work includes evaluation of interplay effect for various breathing periods.« less
  • Purpose: ArcCHECK and 3DVH system (Sun Nuclear) can reconstruct the three-dimensional (3D) dose distribution and provide the DVH analysis in a patient. The aim of this study was to evaluate dosimetric accuracy of this system using customized polymer gel dosimeter, and also Gafchromic EBT3 films. Methods: Polyacrylamide-based gel contained magnesium chloride as a sensitizer (iPAGAT) was used in this study. Volumetric-modulated arc therapy (VMAT) plan was performed for the C-shape structure by the Eclipse treatment planning system (Varian) and used to irradiate the ArcCHECK by the Novalis Tx linear accelerator (Varian/BrainLAB). The cubic phantom filled with iPAGAT and EBT3 filmsmore » placed in three orthogonal planes (axial, sagittal, and coronal) inserted into the I’mRT Phantom (IBA Dosimetry) simulated a patient were irradiated with the same VMAT plan. The measurement-guided 3D dose distribution was reconstructed using 3DVH software from the measured data of the ArcCHECK. The 3D dose distribution in iPAGAT was read out by Signa 1.5 T MRI system (GE), and 2D dose distribution on EBT3 was read out by color scanner (Epson). The comparison of all the dose distributions was performed with dose profiles and gamma index analysis in orthogonal planes using in-house developed software. Results: A good agreement was observed by overlaying the dose profiles of 3DVH, EBT3, and iPAGAT. The mean pass rates by gamma index analysis with 3%/3 mm criteria in orthogonal planes were 94.3% (3DVH vs EBT3), 91.1% (3DVH vs iPAGAT), and 96.4% (iPAGAT vs EBT3), respectively. Conclusion: 3D dose distribution reconstructed by ArcCHECK and 3DVH system was estimated accurately in a patient. However, slightly differences were observed between 3DVH and iPAGAT because of MRI noise, therefore further study is required to improve the accuracy of MRI based polymer gel dosimetry for the DVH analysis.« less