skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-G-BRB-09: Kompeito-Shot: Development of a Novel Verification System for 3D Beam Alignment Including the Sag of Gantry Head

Abstract

Purpose: High accuracy of beam axis is required for high-precision radiation therapy. It is impossible to quantitatively and directly evaluate the sagging effect of the gantry head using current methods (star-shot and Winston-Lutz tests) when the gantry head sags under the weight of MLC and X-Y jaws. We introduce a novel method “Kompeito-shot (3D star-shot)” for the verification of 3D beam alignment (3D isocentricity). This method enables direct measurement of the sagging effect. We developed the system and examined the concept of this system. Methods: The system composed of a plastic scintillator (PS), a truncated cone-shaped mirror, a plane mirror and a CCD camera. Two types of PS were compared. One consisted of a column PS (Co system), the other consisted of a column PS inserted into a barrel PS with shading film in between (Co-Ba system). The system was irradiated with a 6-MV photon beam and the scintillation light was measured using the CCD camera through the mirror system. The gantry angle was set from 270 to 300 degrees to mimic the sagging of the gantry head for evaluating the accuracy of the system. The distance between a center of PS and entrance / exit points were calculated tomore » analyze the gantry angle. And, the calculated gantry angle and the irradiated gantry angle were compared. Results: We compared the measured image of Co system and that of Co-Ba system. Entrance and exit areas were visualized clearly. The histogram showing the difference between the calculated gantry angle and the irradiated gantry angle was fitted with a Gaussian function. Mean and standard deviation of Co-Ba system were smaller than that of Co system by one order of magnitude. Conclusion: We developed the Kompeito-shot system and evaluated the accuracy of the system. The basic concept works for the verification of 3D isocentricity.« less

Authors:
;  [1]; ; ;  [1];  [2];  [3];  [4];  [5];  [1];  [2];  [1];  [2];  [2]
  1. Hiroshima University, Hiroshima (Japan)
  2. (Japan)
  3. Hiroshima University Hospital, Hiroshima (Japan)
  4. Rikkyo University, Tokyo (Japan)
  5. The University of Tokyo, Tokyo (Japan)
Publication Date:
OSTI Identifier:
22649281
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; A CENTERS; ACCURACY; ALIGNMENT; CHARGE-COUPLED DEVICES; COBALT; HEAD; IRRADIATION; PHOTON BEAMS; VERIFICATION; VISIBLE RADIATION

Citation Formats

Tsuneda, M, Nishio, T, Saito, A, Kawahara, D, Ochi, Y, Hiroshima University Hospital, Hiroshima, Hioki, K, Matsushita, K, Tanaka, S, Ozawa, S, Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Nagata, Y, Hiroshima University Hospital, Hiroshima, and Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima. SU-G-BRB-09: Kompeito-Shot: Development of a Novel Verification System for 3D Beam Alignment Including the Sag of Gantry Head. United States: N. p., 2016. Web. doi:10.1118/1.4956916.
Tsuneda, M, Nishio, T, Saito, A, Kawahara, D, Ochi, Y, Hiroshima University Hospital, Hiroshima, Hioki, K, Matsushita, K, Tanaka, S, Ozawa, S, Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Nagata, Y, Hiroshima University Hospital, Hiroshima, & Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima. SU-G-BRB-09: Kompeito-Shot: Development of a Novel Verification System for 3D Beam Alignment Including the Sag of Gantry Head. United States. doi:10.1118/1.4956916.
Tsuneda, M, Nishio, T, Saito, A, Kawahara, D, Ochi, Y, Hiroshima University Hospital, Hiroshima, Hioki, K, Matsushita, K, Tanaka, S, Ozawa, S, Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima, Nagata, Y, Hiroshima University Hospital, Hiroshima, and Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima. 2016. "SU-G-BRB-09: Kompeito-Shot: Development of a Novel Verification System for 3D Beam Alignment Including the Sag of Gantry Head". United States. doi:10.1118/1.4956916.
@article{osti_22649281,
title = {SU-G-BRB-09: Kompeito-Shot: Development of a Novel Verification System for 3D Beam Alignment Including the Sag of Gantry Head},
author = {Tsuneda, M and Nishio, T and Saito, A and Kawahara, D and Ochi, Y and Hiroshima University Hospital, Hiroshima and Hioki, K and Matsushita, K and Tanaka, S and Ozawa, S and Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima and Nagata, Y and Hiroshima University Hospital, Hiroshima and Hiroshima High-Precision Radiotherapy Cancer Center, Hiroshima},
abstractNote = {Purpose: High accuracy of beam axis is required for high-precision radiation therapy. It is impossible to quantitatively and directly evaluate the sagging effect of the gantry head using current methods (star-shot and Winston-Lutz tests) when the gantry head sags under the weight of MLC and X-Y jaws. We introduce a novel method “Kompeito-shot (3D star-shot)” for the verification of 3D beam alignment (3D isocentricity). This method enables direct measurement of the sagging effect. We developed the system and examined the concept of this system. Methods: The system composed of a plastic scintillator (PS), a truncated cone-shaped mirror, a plane mirror and a CCD camera. Two types of PS were compared. One consisted of a column PS (Co system), the other consisted of a column PS inserted into a barrel PS with shading film in between (Co-Ba system). The system was irradiated with a 6-MV photon beam and the scintillation light was measured using the CCD camera through the mirror system. The gantry angle was set from 270 to 300 degrees to mimic the sagging of the gantry head for evaluating the accuracy of the system. The distance between a center of PS and entrance / exit points were calculated to analyze the gantry angle. And, the calculated gantry angle and the irradiated gantry angle were compared. Results: We compared the measured image of Co system and that of Co-Ba system. Entrance and exit areas were visualized clearly. The histogram showing the difference between the calculated gantry angle and the irradiated gantry angle was fitted with a Gaussian function. Mean and standard deviation of Co-Ba system were smaller than that of Co system by one order of magnitude. Conclusion: We developed the Kompeito-shot system and evaluated the accuracy of the system. The basic concept works for the verification of 3D isocentricity.},
doi = {10.1118/1.4956916},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: To verify the usefulness of our developed beam ON-LINE positron emission tomography (PET) system mounted on a rotating gantry port (BOLPs-RGp) for dose-volume delivery-guided proton therapy (DGPT). Methods and Materials: In the proton treatment room at our facility, a BOLPs-RGp was constructed so that a planar PET apparatus could be mounted with its field of view covering the iso-center of the beam irradiation system. Activity measurements were performed in 48 patients with tumors of the head and neck, liver, lungs, prostate, and brain. The position and intensity of the activity were measured using the BOLPs-RGp during the 200 smore » immediately after the proton irradiation. Results: The daily measured activity images acquired by the BOLPs-RGp showed the proton irradiation volume in each patient. Changes in the proton-irradiated volume were indicated by differences between a reference activity image (taken at the first treatment) and the daily activity-images. In the case of head-and-neck treatment, the activity distribution changed in the areas where partial tumor reduction was observed. In the case of liver treatment, it was observed that the washout effect in necrotic tumor cells was slower than in non-necrotic tumor cells. Conclusions: The BOLPs-RGp was developed for the DGPT. The accuracy of proton treatment was evaluated by measuring changes of daily measured activity. Information about the positron-emitting nuclei generated during proton irradiation can be used as a basis for ensuring the high accuracy of irradiation in proton treatment.« less
  • Purpose: The Mevion proton therapy machine is the first to feature a gantry mounted sychro-cyclotron. In addition, the system utilizes a 6D motion couch and kV imaging for precise proton therapy. To quantify coincidence between these systems, isocentricity tests were performed based on kV imaging alignment using radiochromic film. Methods: The 100 ton gantry and 6D robotic couch can rotate 190° around isocenter to provide necessary beam angles for treatment. The kV sources and detector panels are deployed as needed to acquire orthogonal portals. Gantry and couch mechanical isocenter were tested using star-shots and radiochromic-film (RCF). Using kV imaging, themore » star-shot phantom was aligned to an embedded fiducial and the isocenter was marked on RCF with a pinprick. The couch and gantry stars were performed by irradiating films at every 45° and 30°, respectively. A proton beam with a range and modulation-width of 18 cm was used. A Winston-Lutz test was also performed at the same gantry and couch rotations using a custom jig holding RCF and a tungsten ball placed at isocenter. A 2 cm diameter circular aperture was used for the irradiation. Results: The couch star-shot indicated a minimum tangent circle of 0.6 mm, with a 0.9 mm offset from the manually marked isocenter. The gantry star-shot showed a 0.6 mm minimum tangent circle with a 0.5 mm offset from the pinprick. The Winston Lutz test performed for gantry rotation showed a maximum deviation from center of 0.5 mm. Conclusion: Based on star-shots and Winston-Lutz tests, the proton gantry and 6D couch isocentricity are within 1 mm. In this study, we have shown that the methods commonly utilized for Linac characterization can be applied to proton therapy. This revolutionary proton therapy system possesses excellent agreement between the mechanical and radiation isocenter, providing highly precise treatment.« less
  • Purpose: Given increasing efforts in biomedical research utilizing molecular imaging methods, development of dedicated high-performance small-animal SPECT systems has been growing rapidly in the last decade. In the present work, we propose and assess an alternative concept for SPECT imaging enabling desktop open-gantry imaging of small animals. Methods: The system, PERSPECT, consists of an imaging desk, with a set of tilted detector and pinhole collimator placed beneath it. The object to be imaged is simply placed on the desk. Monte Carlo (MC) and analytical simulations were utilized to accurately model and evaluate the proposed concept and design. Furthermore, a dedicatedmore » image reconstruction algorithm, finite-aperture-based circular projections (FABCP), was developed and validated for the system, enabling more accurate modeling of the system and higher quality reconstructed images. Image quality was quantified as a function of different tilt angles in the acquisition and number of iterations in the reconstruction algorithm. Furthermore, more complex phantoms including Derenzo, Defrise, and mouse whole body were simulated and studied. Results: The sensitivity of the PERSPECT was 207 cps/MBq. It was quantitatively demonstrated that for a tilt angle of 30°, comparable image qualities were obtained in terms of normalized squared error, contrast, uniformity, noise, and spatial resolution measurements, the latter at ∼0.6 mm. Furthermore, quantitative analyses demonstrated that 3 iterations of FABCP image reconstruction (16 subsets/iteration) led to optimally reconstructed images. Conclusions: The PERSPECT, using a novel imaging protocol, can achieve comparable image quality performance in comparison with a conventional pinhole SPECT with the same configuration. The dedicated FABCP algorithm, which was developed for reconstruction of data from the PERSPECT system, can produce high quality images for small-animal imaging via accurate modeling of the system as incorporated in the forward- and back-projection steps. Meanwhile, the developed MC model and the analytical simulator of the system can be applied for further studies on development and evaluation of the system.« less
  • Purpose: Proton therapy requires highly-precise image guidance in patient setup to ensure accurate dose delivery. Cone-beam CT (CBCT) is expected to play an important role to reduce uncertainties in patient setup. Hokkaido University has developed a new proton therapy system dedicated to spot-scanning under a collaborative work with Hitachi Ltd. In our system, an orthogonal X-ray imaging system is mounted on a full-rotating gantry. On-board CBCT imaging is therefore available. We have conducted commissioning of the CBCT system for clinical use in proton therapy. Methods: The orthogonal X-ray imaging system, which consists of two sets of X-ray tubes and flatmore » panel detectors (FPDs), are equipped on the rotating gantry. The FPDs are mounted on the proton beam nozzle and can be retracted when not in use. The distance between the X-ray source and the FPD is about 2.1 m. The maximum rotation speed of the gantry is 1 rpm, so CBCT images can be acquired in approximately 1 minute. The maximum reconstruction volume is nearly 40 cm in diameter and 20 cm in axial length. For commissioning of the CBCT system, mechanical accuracy of the rotating gantry first was evaluated. Imaging performance was examined via quantitative evaluation of image quality. Results: Through the mechanical test, the isocentricity of the gantry was confirmed to be less than 1 mm. Moreover, it was improved to 0.5 mm with an appropriate correction. The accurate rotation of the gantry contributes to the CBCT image quality. In the image quality test, objects with 7 line-pairs per cm, which corresponds to a line spacing of 0.071 cm, could be discerned. Spatial linearity and uniformity were also sufficient. Conclusion: Clinical commissioning of the on-board CBCT system for proton therapy was conducted, and CBCT images with sufficient quality were successfully obtained. This research was supported by the Cabinet Office, Government of Japan and the Japan Society for the Promotion of Science (JSPS) through the Funding Program for World-Leading Innovative R and D on Science and Technology (FIRST Program), initiated by the Council for Science and Technology Policy (CSTP)« less
  • An ion beam alignment system has been developed in order to realize real-time scanning tunneling microscope (STM) observation of 'dopant-ion' irradiation that has been difficult due to the low emission intensity of the liquid-metal-ion-source (LMIS) containing dopant atoms. The alignment system is installed in our original ion gun and STM combined system (IG/STM) which is used for in situ STM observation during ion irradiation. By using an absorbed electron image unit and a dummy sample, ion beam alignment operation is drastically simplified and accurized. We demonstrate that sequential STM images during phosphorus-ion irradiation are successfully obtained for sample surfaces ofmore » Si(111)-7x7 at room temperature and a high temperature of 500 deg. C. The LMIS-IG/STM equipped with the developed ion beam alignment system would be a powerful tool for microscopic investigation of the dynamic processes of ion irradiation.« less