skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-G-201-17: Verification of Dose Distributions From High-Dose-Rate Brachytherapy Ir-192 Source Using a Multiple-Array-Diode-Detector (MapCheck2)

Abstract

Purpose: To investigate quantitatively the accuracy of dose distributions for the Ir-192 high-dose-rate (HDR) brachytherapy source calculated by the Brachytherapy-Planning system (BPS) and measured using a multiple-array-diode-detector in a heterogeneous medium. Methods: A two-dimensional diode-array-detector system (MapCheck2) was scanned with a catheter and the CT-images were loaded into the Varian-Brachytherapy-Planning which uses TG-43-formalism for dose calculation. Treatment plans were calculated for different combinations of one dwell-position and varying irradiation times and different-dwell positions and fixed irradiation time with the source placed 12mm from the diode-array plane. The calculated dose distributions were compared to the measured doses with MapCheck2 delivered by an Ir-192-source from a Nucletron-Microselectron-V2-remote-after-loader. The linearity of MapCheck2 was tested for a range of dwell-times (2–600 seconds). The angular effect was tested with 30 seconds irradiation delivered to the central-diode and then moving the source away in increments of 10mm. Results: Large differences were found between calculated and measured dose distributions. These differences are mainly due to absence of heterogeneity in the dose calculation and diode-artifacts in the measurements. The dose differences between measured and calculated due to heterogeneity ranged from 5%–12% depending on the position of the source relative to the diodes in MapCheck2 and different heterogeneities inmore » the beam path. The linearity test of the diode-detector showed 3.98%, 2.61%, and 2.27% over-response at short irradiation times of 2, 5, and 10 seconds, respectively, and within 2% for 20 to 600 seconds (p-value=0.05) which depends strongly on MapCheck2 noise. The angular dependency was more pronounced at acute angles ranging up to 34% at 5.7 degrees. Conclusion: Large deviations between measured and calculated dose distributions for HDR-brachytherapy with Ir-192 may be improved when considering medium heterogeneity and dose-artifact of the diodes. This study demonstrates that multiple-array-diode-detectors provide practical and accurate dosimeter to verify doses delivered from the brachytherapy Ir-192-source.« less

Authors:
; ; ;  [1]
  1. University of Oklahoma Health Sciences Center, Oklahoma City, OK (United States)
Publication Date:
OSTI Identifier:
22649259
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BRACHYTHERAPY; CAT SCANNING; IRIDIUM 192; IRRADIATION; RADIATION DOSE DISTRIBUTIONS; TWO-DIMENSIONAL CALCULATIONS

Citation Formats

Harpool, K, De La Fuente Herman, T, Ahmad, S, and Ali, I. SU-G-201-17: Verification of Dose Distributions From High-Dose-Rate Brachytherapy Ir-192 Source Using a Multiple-Array-Diode-Detector (MapCheck2). United States: N. p., 2016. Web. doi:10.1118/1.4956890.
Harpool, K, De La Fuente Herman, T, Ahmad, S, & Ali, I. SU-G-201-17: Verification of Dose Distributions From High-Dose-Rate Brachytherapy Ir-192 Source Using a Multiple-Array-Diode-Detector (MapCheck2). United States. doi:10.1118/1.4956890.
Harpool, K, De La Fuente Herman, T, Ahmad, S, and Ali, I. 2016. "SU-G-201-17: Verification of Dose Distributions From High-Dose-Rate Brachytherapy Ir-192 Source Using a Multiple-Array-Diode-Detector (MapCheck2)". United States. doi:10.1118/1.4956890.
@article{osti_22649259,
title = {SU-G-201-17: Verification of Dose Distributions From High-Dose-Rate Brachytherapy Ir-192 Source Using a Multiple-Array-Diode-Detector (MapCheck2)},
author = {Harpool, K and De La Fuente Herman, T and Ahmad, S and Ali, I},
abstractNote = {Purpose: To investigate quantitatively the accuracy of dose distributions for the Ir-192 high-dose-rate (HDR) brachytherapy source calculated by the Brachytherapy-Planning system (BPS) and measured using a multiple-array-diode-detector in a heterogeneous medium. Methods: A two-dimensional diode-array-detector system (MapCheck2) was scanned with a catheter and the CT-images were loaded into the Varian-Brachytherapy-Planning which uses TG-43-formalism for dose calculation. Treatment plans were calculated for different combinations of one dwell-position and varying irradiation times and different-dwell positions and fixed irradiation time with the source placed 12mm from the diode-array plane. The calculated dose distributions were compared to the measured doses with MapCheck2 delivered by an Ir-192-source from a Nucletron-Microselectron-V2-remote-after-loader. The linearity of MapCheck2 was tested for a range of dwell-times (2–600 seconds). The angular effect was tested with 30 seconds irradiation delivered to the central-diode and then moving the source away in increments of 10mm. Results: Large differences were found between calculated and measured dose distributions. These differences are mainly due to absence of heterogeneity in the dose calculation and diode-artifacts in the measurements. The dose differences between measured and calculated due to heterogeneity ranged from 5%–12% depending on the position of the source relative to the diodes in MapCheck2 and different heterogeneities in the beam path. The linearity test of the diode-detector showed 3.98%, 2.61%, and 2.27% over-response at short irradiation times of 2, 5, and 10 seconds, respectively, and within 2% for 20 to 600 seconds (p-value=0.05) which depends strongly on MapCheck2 noise. The angular dependency was more pronounced at acute angles ranging up to 34% at 5.7 degrees. Conclusion: Large deviations between measured and calculated dose distributions for HDR-brachytherapy with Ir-192 may be improved when considering medium heterogeneity and dose-artifact of the diodes. This study demonstrates that multiple-array-diode-detectors provide practical and accurate dosimeter to verify doses delivered from the brachytherapy Ir-192-source.},
doi = {10.1118/1.4956890},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: To investigate the dosimetric accuracy of multiple-diode-array detector (Mapcheck2) for high-dose-rate brachytherapy Ir-192 source. The two-dimensional (2D) dose distributions measured with MapCheck2 were validated with EBT2 Gafchromic film measurement and AAPM task-group- 43 (TG-43) modeling. Methods: 2D-dose distributions from Ir-192 source were measured with MapCheck2 and EBT2-films. MapCheck2 response was corrected for effects: directional dependence, diode and phantom heterogeneity. Optical density growth of the film was controlled by synchronized scanning of the film exposed to Ir-192 and calibration films exposed to 6 MV linac beams. Similarly, MapCheck2 response was calibrated to dose using 6 MV beams. An empirical modelmore » was developed for the dose distributions measured with Mapcheck2 that considered directional, diode and phantom heterogeneity corrections. The dose deposited in solid-state-detectors was modeled using a cavity theory model for the diode. This model was then validated with measurements using EBT2-films and calculations with TG-43. Results: The response of MapCheck2 has been corrected for different effects including: (a) directional dependence of 0–20% over angular range 0o–90o, (b) phantom heterogeneity (3%) and (c) diode heterogeneity (9%). The corrected dose distributions measured with MapCheck2 agreed well with the measured dose distributions from EBT2-film and with calculations using TG-43 within 5% over a wide range of dose levels and rates. The advantages of MapCheck2 include less noisy, linear and stable response compared with film. The response of MapCheck2 exposed to 192Ir-source showed no energy dependence similar to its response to MV energy beam. Detection spatial-resolution of individual diodes was 0.8×0.8 mm2, however, 2DMapCheck2 resolution is limited by distance between diodes (7.07 mm). Conclusion: The dose distribution measured with MapCheck2 agreed well within 5% with that measured using EBT2-films; and calculations with TG- 43. Considering correction of artifacts, MapCheck2 provides a compact, practical and accurate dosimetric tool for measurement of 2D-dose distributions for brachytherapy Ir-192.« less
  • Purpose: To evaluate the performance of a two-dimensional (2D) array-diode- detector for geometric and dosimetric quality assurance (QA) tests of high-dose-rate (HDR) brachytherapy with an Ir-192-source. Methods: A phantom setup was designed that encapsulated a two-dimensional (2D) array-diode-detector (MapCheck2) and a catheter for the HDR brachytherapy Ir-192 source. This setup was used to perform both geometric and dosimetric quality assurance for the HDR-Ir192 source. The geometric tests included: (a) measurement of the position of the source and (b) spacing between different dwell positions. The dosimteric tests include: (a) linearity of output with time, (b) end effect and (c) relative dosemore » verification. The 2D-dose distribution measured with MapCheck2 was used to perform the previous tests. The results of MapCheck2 were compared with the corresponding quality assurance testes performed with Gafchromic-film and well-ionization-chamber. Results: The position of the source and the spacing between different dwell-positions were reproducible within 1 mm accuracy by measuring the position of maximal dose using MapCheck2 in contrast to the film which showed a blurred image of the dwell positions due to limited film sensitivity to irradiation. The linearity of the dose with dwell times measured from MapCheck2 was superior to the linearity measured with ionization chamber due to higher signal-to-noise ratio of the diode readings. MapCheck2 provided more accurate measurement of the end effect with uncertainty < 1.5% in comparison with the ionization chamber uncertainty of 3%. Although MapCheck2 did not provide absolute calibration dosimeter for the activity of the source, it provided accurate tool for relative dose verification in HDR-brachytherapy. Conclusion: The 2D-array-diode-detector provides a practical, compact and accurate tool to perform quality assurance for HDR-brachytherapy with an Ir-192 source. The diodes in MapCheck2 have high radiation sensitivity and linearity that is superior to Gafchromic-films and ionization chamber used for geometric and dosimetric QA in HDR-brachytherapy, respectively.« less
  • Purpose: Despite improvements of HDR brachytherapy delivery systems, verification of source position is still typically based on the length of the wire reeled out relative to the parked position. Yet, the majority of errors leading to medical events in HDR treatments continue to be classified as missed targets or wrong treatment sites. We investigate the feasibility of using dose maps acquired with a two-dimensional diode array to independently verify the source locations, dwell times, and dose during an HDR treatment. Methods: Custom correction factors were integrated into frame-by-frame raw counts recorded for a Varian VariSource™ HDR afterloader Ir-192 source locatedmore » at various distances in air and in solid water from a MapCHECK2™ diode array. The resultant corrected counts were analyzed to determine the dwell position locations and doses delivered. The local maxima of polynomial equations fitted to the extracted dwell dose profiles provided the X and Y coordinates while the distance to the source was determined from evaluation of the full width at half maximum (FWHM). To verify the approach, the experiment was repeated as the source was moved through dwell positions at various distances along an inclined plane, mimicking a vaginal cylinder treatment. Results: Dose map analysis was utilized to provide the coordinates of the source and dose delivered over each dwell position. The accuracy in determining source dwell positions was found to be +/−1.0 mm of the preset values, and doses within +/−3% of those calculated by the BrachyVision™ treatment planning system for all measured distances. Conclusion: Frame-by-frame data furnished by a 2 -D diode array can be used to verify the dwell positions and doses delivered by the HDR source over the course of treatment. Our studies have verified that measurements provided by the MapCHECK2™ can be used as a routine QA tool for HDR treatment delivery verification.« less
  • Purpose: We report our initial clinical experience with a novel position-sensitive source-tracking system based on a flat panel imager. The system has been trialled with 4 prostate HDR brachytherapy patients (8 treatment fractions) in this initial study. Methods: The flat panel imaging system was mounted under a customised carbon fibre couch top assembly (Figure 1). Three gold fiducial markers were implanted into the prostate of each patient at the time of catheter placement. X-ray dwell position markers were inserted into three catheters and a radiograph acquired to locate the implant relative to the imaging device. During treatment, as the HDRmore » source dwells were delivered, images were acquired and processed to determine the position of the source in the patient. Source positions measured by the imaging device were compared to the treatment plan for verification of treatment delivery. Results: Measured dwell positions provided verification of relative dwell spacing within and between catheters, in the coronal plane. Measurements were typically within 2.0mm (0.2mm – 3.3mm, s.d. 0.8mm) of the planned positions over 60 dwells (Figure 2). Discrimination between larger dwell intervals and catheter differentiation were clear. This confirms important delivery attributes such as correct transfer tube connection, source step size, relative catheter positions and therefore overall correct plan selection and delivery. The fiducial markers, visible on the radiograph, provided verification of treatment delivery to the correct anatomical location. The absolute position of the dwells was determined by comparing the measured dwell positions with the x-ray markers from the radiograph, validating the programmed treatment indexer length. The total impact on procedure time was less than 5 minutes. Conclusion: The novel, noninvasive HDR brachytherapy treatment verification system was used clinically with minor impact on workflow. The system allows verification of correct treatment delivery, free of most potential human related errors identified in ICRP 97. This research is supported by funding from the Australian Government Department of Health through Cancer Australia grant no. 616614.« less
  • Purpose: To evaluate quantitatively dose distributions from helical, axial and cone-beam CT clinical imaging techniques by measurement using a two-dimensional (2D) diode-array detector. Methods: 2D-dose distributions from selected clinical protocols used for axial, helical and cone-beam CT imaging were measured using a diode-array detector (MapCheck2). The MapCheck2 is composed from solid state diode detectors that are arranged in horizontal and vertical lines with a spacing of 10 mm. A GE-Light-Speed CT-simulator was used to acquire axial and helical CT images and a kV on-board-imager integrated with a Varian TrueBeam-STx machine was used to acquire cone-beam CT (CBCT) images. Results: Themore » dose distributions from axial, helical and cone-beam CT were non-uniform over the region-of-interest with strong spatial and angular dependence. In axial CT, a large dose gradient was measured that decreased from lateral sides to the middle of the phantom due to large superficial dose at the side of the phantom in comparison with larger beam attenuation at the center. The dose decreased at the superior and inferior regions in comparison to the center of the phantom in axial CT. An asymmetry was found between the right-left or superior-inferior sides of the phantom which possibly to angular dependence in the dose distributions. The dose level and distribution varied from one imaging technique into another. For the pelvis technique, axial CT deposited a mean dose of 3.67 cGy, helical CT deposited a mean dose of 1.59 cGy, and CBCT deposited a mean dose of 1.62 cGy. Conclusions: MapCheck2 provides a robust tool to measure directly 2D-dose distributions for CT imaging with high spatial resolution detectors in comparison with ionization chamber that provides a single point measurement or an average dose to the phantom. The dose distributions measured with MapCheck2 consider medium heterogeneity and can represent specific patient dose.« less