skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-G-201-05: Comparison of Different Methods for Output Verification of Eleckta Nucletron’s Valencia Skin Applicators

Abstract

Purpose: The provided output factors for Elekta Nucletron’s skin applicators are based on Monte Carlo simulations. These outputs have not been independently verified, and there is no recognized method for output verification of the vendor’s applicators. The purpose of this work is to validate the outputs provided by the vendor experimentally. Methods: Using a Flexitron Ir-192 HDR unit, three experimental methods were employed to determine dose with the 30 mm diameter Valencia applicator: first a gradient method using extrapolation ionization chamber (Far West Technology, EIC-1) measurements in solid water phantom at 3 mm SCD was used. The dose was derived based on first principles. Secondly a combination of a parallel plate chamber (Exradin A-10) and the EIC-1 was used to determine air kerma at 3 mm SCD. The air kerma was converted to dose to water in line with TG-61 formalism by using a muen ratio and a scatter factor measured with the skin applicators. Similarly a combination of the A-10 parallel plate chamber and gafchromic film (EBT 3) was also used. The Nk factor for the A-10 chamber was obtained through linear interpolation between ADCL supplied Nk factors for Cs-137 and M250. Results: EIC-1 measurements in solid water definedmore » the outputs factor at 3 mm as 0.1343 cGy/U hr. The combination of A-10/ EIC-1 and A-10/EBT3 lead to output factors of 0.1383 and 0.1568 cGy/U hr, respectively. For comparison the output recommended by the vendor is 0.1659 cGy/U hr. Conclusion: All determined dose rates were lower than the vendor supplied values. The observed discrepancy between extrapolation chamber and film methods can be ascribed to extracameral gradient effects that may not be fully accounted for by the former method.« less

Authors:
;  [1]
  1. McLaren-Macomb, Clinton Township, MI (United States)
Publication Date:
OSTI Identifier:
22649247
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; CESIUM 137; COMPUTERIZED SIMULATION; DOSE RATES; IRIDIUM 192; MONTE CARLO METHOD; SKIN; VERIFICATION; WATER

Citation Formats

Barrett, J, and Yudelev, M. SU-G-201-05: Comparison of Different Methods for Output Verification of Eleckta Nucletron’s Valencia Skin Applicators. United States: N. p., 2016. Web. doi:10.1118/1.4956878.
Barrett, J, & Yudelev, M. SU-G-201-05: Comparison of Different Methods for Output Verification of Eleckta Nucletron’s Valencia Skin Applicators. United States. doi:10.1118/1.4956878.
Barrett, J, and Yudelev, M. Wed . "SU-G-201-05: Comparison of Different Methods for Output Verification of Eleckta Nucletron’s Valencia Skin Applicators". United States. doi:10.1118/1.4956878.
@article{osti_22649247,
title = {SU-G-201-05: Comparison of Different Methods for Output Verification of Eleckta Nucletron’s Valencia Skin Applicators},
author = {Barrett, J and Yudelev, M},
abstractNote = {Purpose: The provided output factors for Elekta Nucletron’s skin applicators are based on Monte Carlo simulations. These outputs have not been independently verified, and there is no recognized method for output verification of the vendor’s applicators. The purpose of this work is to validate the outputs provided by the vendor experimentally. Methods: Using a Flexitron Ir-192 HDR unit, three experimental methods were employed to determine dose with the 30 mm diameter Valencia applicator: first a gradient method using extrapolation ionization chamber (Far West Technology, EIC-1) measurements in solid water phantom at 3 mm SCD was used. The dose was derived based on first principles. Secondly a combination of a parallel plate chamber (Exradin A-10) and the EIC-1 was used to determine air kerma at 3 mm SCD. The air kerma was converted to dose to water in line with TG-61 formalism by using a muen ratio and a scatter factor measured with the skin applicators. Similarly a combination of the A-10 parallel plate chamber and gafchromic film (EBT 3) was also used. The Nk factor for the A-10 chamber was obtained through linear interpolation between ADCL supplied Nk factors for Cs-137 and M250. Results: EIC-1 measurements in solid water defined the outputs factor at 3 mm as 0.1343 cGy/U hr. The combination of A-10/ EIC-1 and A-10/EBT3 lead to output factors of 0.1383 and 0.1568 cGy/U hr, respectively. For comparison the output recommended by the vendor is 0.1659 cGy/U hr. Conclusion: All determined dose rates were lower than the vendor supplied values. The observed discrepancy between extrapolation chamber and film methods can be ascribed to extracameral gradient effects that may not be fully accounted for by the former method.},
doi = {10.1118/1.4956878},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}
  • Purpose: and Leipzig applicators (VLAs) are single-channel brachytherapy surface applicators used to treat skin lesions up to 2cm diameter. Source dwell times can be calculated and entered manually after clinical set-up or ultrasound. This procedure differs dramatically from CT-based planning; the novelty and unfamiliarity could lead to severe errors. To build layers of safety and ensure quality, a multidisciplinary team created a protocol and applied Failure Modes and Effects Analysis (FMEA) to the clinical procedure for HDR VLA skin treatments. Methods: team including physicists, physicians, nurses, therapists, residents, and administration developed a clinical procedure for VLA treatment. The procedure wasmore » evaluated using FMEA. Failure modes were identified and scored by severity, occurrence, and detection. The clinical procedure was revised to address high-scoring process nodes. Results: Several key components were added to the clinical procedure to minimize risk probability numbers (RPN): -Treatments are reviewed at weekly QA rounds, where physicians discuss diagnosis, prescription, applicator selection, and set-up. Peer review reduces the likelihood of an inappropriate treatment regime. -A template for HDR skin treatments was established in the clinical EMR system to standardize treatment instructions. This reduces the chances of miscommunication between the physician and planning physicist, and increases the detectability of an error during the physics second check. -A screen check was implemented during the second check to increase detectability of an error. -To reduce error probability, the treatment plan worksheet was designed to display plan parameters in a format visually similar to the treatment console display. This facilitates data entry and verification. -VLAs are color-coded and labeled to match the EMR prescriptions, which simplifies in-room selection and verification. Conclusion: Multidisciplinary planning and FMEA increased delectability and reduced error probability during VLA HDR Brachytherapy. This clinical model may be useful to institutions implementing similar procedures.« less
  • Purpose: The use of radiation as a treatment modality for skin cancer has increased significantly over the last decade with standardized applicators. Utilizing 3D printing, the ability to make applicators specifically designed for each patient’s anatomy has become economically feasible. With this in mind it was the aim of this study to determine the dosimetric accuracy of a 3-D printed HDR brachytherapy applicator for the skin. Methods: A CT reference image was used to generate a custom applicator based on an anthropomorphic head and neck phantom. To create the applicator a 1cm expansion anteriorly with 0.5cmX0.5cm trenches on the outermore » surface that were spaced 1cm sup-inf to accommodate standard 6F flexible catheters. The applicator was printed using PLA material using a printrbot simple printer. A treatment plan optimized to deliver a clinically representative volume was created in Oncentra and delivered with a nucletron afterloader. Measurements were made using TLDs and EBT3 gafchromic film that were placed between the applicator and the phantom’s forehead. An additional piece of film was also used to qualitatively asses the dose distribution in the transverse plane. Using a standard vaginal cylinder and bolus, a standardized curve correlating TLD and film exposure-to-radiation dose was established by irradiating film to known doses (200,500,700 cGy) at a 3.5 cm radius distance. Results: Evaluated TLDs showed the absolute dose delivered to the skin surface using the 3-D printed bolus was 615cGy±6%, with a mean predicted TPS value in the measured area of 617.5±7%. Additionally, planar dose distributions had good qualitative agreement with calculated TPS isodoses. Conclusion: This work demonstrates patient specific 3-D printed HDR brachytherapy applicators for skin cancer treatments are practical and accurate in TPS calculations but additional measurements are needed to verify additional sites and dose at depth.« less
  • Purpose: The Valencia applicators have recently been introduced for HDR treatment of small and shallow superficial skin lesions (< 20 mm diameter and 3-mm depth). Per AAPM TG 56, any HDR applicator internal dimensions must be verified prior to clinical use. However radiographic and tomographic imaging to validate the Valencia applicators is impractical due to the Tungsten alloy housing and flattening filter. In this study, we propose to use EBT3 film to indirectly confirm the physical integrity of the Valencia applicators. Methods: Treatment plans were created using the Oncentra MasterPlan TPS v4.5 for the H2 (20-mm dia.) and H3 (30-mmmore » dia.) Valencia Applicators. A virtual CT phantom (2-mm slice thickness) was created with one source position in water. The published effective depth method was used for each applicator to delivery 500 cGy to a 3-mm depth using the TG-43 formalism. Film measurements (n=3) at 3-mm depth and vertical plane in solid water were performed for each applicator to verify the prescribed dose calculated by the TPS. Percent depth dose curves and off-axis profiles (phantom surface and 3-mm depth) were measured and compared to published data. Films were analyzed using an in-house written program and RIT113 v6 software. Film calibration was performed per TG-55 protocol using the Ir-192 source with NIST-traceable calibration. Results: The prescription absolute dose difference was 1% for the Valencia H2 applicator and 4% for the Valencia H3 applicator. The measured percent depth dose curves and off-axis dose profiles measured for the H2 and H2 Valencia applicators are in excellent agreement with the Granero et al. Monte Carlo results{sup 1}. Conclusion: Gafchromic EBT3 film can be used to indirectly verify the internal components of special HDR skin applicators constructed from high Z materials.{sup 1}Granero et al. “Design and evaluation of a HDR skin applicator with flattening filter”, Med. Phys. 35(2), 495–503, 2008.« less
  • Purpose: Contemporary brachytherapy treatment planning systems-(TPS) include the applicator model libraries to improve digitization; however, the library of surface-flap-applicators-(SFA) is not incorporated into the commercial TPS. We propose the dynamic library-(DL) for SFA and investigate if such library can eliminate applicator reconstruction, source activation and dose normalization. Methods: DL was generated for the SFA using the C++class libraries of the Visualization Toolkit-(VTK) and Qt-application framework for complete abstraction of the graphical interface. DL was designed such that the user can initially choose the size of the applicator that corresponds to the one clinically placed to the patient. The virtual applicator-(VA)more » has an elastic property so that it can be registered to the clinical CT images with a real applicator-(RA) on it. The VA and RA matching is performed by adjusting the position and curvature of the VA. The VA does not elongate or change its size so each catheter could always be at a distance of 5mm from the skin and 10mm apart from the closest catheter maintaining the physical accuracy of the clinical setup. Upon the applicator placement, the dwell positions were automatically activated, and the dose is normalized to the prescription depth. The accuracy of source positioning was evaluated using various applicator sizes. Results: The accuracy of the applicator placement was in the sub-millimeter range. The time-study reveals that up to 50% of the planning time can be saved depending on the complexity of the clinical setup. Unlike in the classic approach, the planning time was not highly dependent on the applicator size. Conclusion: The practical benefits of the DL of the SFA were demonstrated. The time demanding planning processes can be partially automated. Consequently, the planner can dedicate effort to fine tuning, which can result in the improvement of the quality of treatment plans in surface brachytherapy.« less
  • Purpose: To investigate an Electronic Portal Imaging Device (EPID) coupled to a 2D array dosimeter to provide simultaneous imaging and dose verification. Methods: The novel dual detector configuration comprised of a 2D diode array dosimeter, referred to as a Magic Plate (MP) placed directly on a standard EPID. Dose response of the MP was evaluated by measuring the detector’s response with respect to off-axis position and field size with 30 cm of solid water (SW) acting as a transit object in the beam. Measurements were performed with 3, 5, 10 and 15 mm SW build-up and compared to 2D ionisationmore » chamber array (ICA) measurements and the PinnacleTM treatment planning system (TPS) at a source to detector distance of 150 cm with a 6 MV beam. Clinical dosimetric performance was evaluated by measuring a number of intensity-modulated radiation therapy (IMRT) beams in transit geometry. Imaging performance of the EPID was quantified by measuring the contrast-to-noise ratio (CNR) and spatial resolution. Images of a Rando phantom were used for qualitative assessment. Results: Measured MP off-axis and field size response agreed within 2% of TPS and ICA responses when measured using 15 mm SW build-up. Clinical IMRT beams had gamma pass rates of ≥95% at 3%/3mm criteria. Measured CNR and spatial resolution (f50) were 264.96, 210.6, and 0.41, 0.40 with build-up of 5 and 15 mm respectively for the dual detector configuration. CNR and spatial resolution of 643.9 and 0.41 were measured for standard EPID. CNR was quantitatively worse in the dual detector configuration. Differences in imaging performance were not visible in a qualitative assessment using a Rando phantom. Conclusion: Combining a prototype MP 2D dosimeter with a conventional EPID did not significantly detract from the performance of either device and has the potential for simultaneous on-line patient transit dosimetry and image assessment in radiation therapy. Cancer Institute NSW Australia(Research Equipment Grant 10/REG/1-20) and Cancer Council NSW (Grant ID RG 1-06)« less