skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-G-201-05: Comparison of Different Methods for Output Verification of Eleckta Nucletron’s Valencia Skin Applicators

Abstract

Purpose: The provided output factors for Elekta Nucletron’s skin applicators are based on Monte Carlo simulations. These outputs have not been independently verified, and there is no recognized method for output verification of the vendor’s applicators. The purpose of this work is to validate the outputs provided by the vendor experimentally. Methods: Using a Flexitron Ir-192 HDR unit, three experimental methods were employed to determine dose with the 30 mm diameter Valencia applicator: first a gradient method using extrapolation ionization chamber (Far West Technology, EIC-1) measurements in solid water phantom at 3 mm SCD was used. The dose was derived based on first principles. Secondly a combination of a parallel plate chamber (Exradin A-10) and the EIC-1 was used to determine air kerma at 3 mm SCD. The air kerma was converted to dose to water in line with TG-61 formalism by using a muen ratio and a scatter factor measured with the skin applicators. Similarly a combination of the A-10 parallel plate chamber and gafchromic film (EBT 3) was also used. The Nk factor for the A-10 chamber was obtained through linear interpolation between ADCL supplied Nk factors for Cs-137 and M250. Results: EIC-1 measurements in solid water definedmore » the outputs factor at 3 mm as 0.1343 cGy/U hr. The combination of A-10/ EIC-1 and A-10/EBT3 lead to output factors of 0.1383 and 0.1568 cGy/U hr, respectively. For comparison the output recommended by the vendor is 0.1659 cGy/U hr. Conclusion: All determined dose rates were lower than the vendor supplied values. The observed discrepancy between extrapolation chamber and film methods can be ascribed to extracameral gradient effects that may not be fully accounted for by the former method.« less

Authors:
;  [1]
  1. McLaren-Macomb, Clinton Township, MI (United States)
Publication Date:
OSTI Identifier:
22649247
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; CESIUM 137; COMPUTERIZED SIMULATION; DOSE RATES; IRIDIUM 192; MONTE CARLO METHOD; SKIN; VERIFICATION; WATER

Citation Formats

Barrett, J, and Yudelev, M. SU-G-201-05: Comparison of Different Methods for Output Verification of Eleckta Nucletron’s Valencia Skin Applicators. United States: N. p., 2016. Web. doi:10.1118/1.4956878.
Barrett, J, & Yudelev, M. SU-G-201-05: Comparison of Different Methods for Output Verification of Eleckta Nucletron’s Valencia Skin Applicators. United States. doi:10.1118/1.4956878.
Barrett, J, and Yudelev, M. Wed . "SU-G-201-05: Comparison of Different Methods for Output Verification of Eleckta Nucletron’s Valencia Skin Applicators". United States. doi:10.1118/1.4956878.
@article{osti_22649247,
title = {SU-G-201-05: Comparison of Different Methods for Output Verification of Eleckta Nucletron’s Valencia Skin Applicators},
author = {Barrett, J and Yudelev, M},
abstractNote = {Purpose: The provided output factors for Elekta Nucletron’s skin applicators are based on Monte Carlo simulations. These outputs have not been independently verified, and there is no recognized method for output verification of the vendor’s applicators. The purpose of this work is to validate the outputs provided by the vendor experimentally. Methods: Using a Flexitron Ir-192 HDR unit, three experimental methods were employed to determine dose with the 30 mm diameter Valencia applicator: first a gradient method using extrapolation ionization chamber (Far West Technology, EIC-1) measurements in solid water phantom at 3 mm SCD was used. The dose was derived based on first principles. Secondly a combination of a parallel plate chamber (Exradin A-10) and the EIC-1 was used to determine air kerma at 3 mm SCD. The air kerma was converted to dose to water in line with TG-61 formalism by using a muen ratio and a scatter factor measured with the skin applicators. Similarly a combination of the A-10 parallel plate chamber and gafchromic film (EBT 3) was also used. The Nk factor for the A-10 chamber was obtained through linear interpolation between ADCL supplied Nk factors for Cs-137 and M250. Results: EIC-1 measurements in solid water defined the outputs factor at 3 mm as 0.1343 cGy/U hr. The combination of A-10/ EIC-1 and A-10/EBT3 lead to output factors of 0.1383 and 0.1568 cGy/U hr, respectively. For comparison the output recommended by the vendor is 0.1659 cGy/U hr. Conclusion: All determined dose rates were lower than the vendor supplied values. The observed discrepancy between extrapolation chamber and film methods can be ascribed to extracameral gradient effects that may not be fully accounted for by the former method.},
doi = {10.1118/1.4956878},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = {Wed Jun 15 00:00:00 EDT 2016},
month = {Wed Jun 15 00:00:00 EDT 2016}
}