skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-678: Clotrimazole Sensitizes MCF-7 Breast Cancer Cell Line to Radiation

Abstract

Purpose: To study the effects of Clotrimazole (CLT) on radiosensitivity of MCF-7 Cells in correlation to detachment of Hexokinase II from the Voltage Dependent Anion Channel on the outer membrane of the mitochondria. Apoptotic fractions were also analyzed in relation to the detachment of Hexokinase. Methods: This study focused on the mammary adenocarcinoma cell line, MCF-7. Colony forming assays were used to analyze radiosensitization by CLT. Flow cytometry methods were used to analyze apoptotic vs necrotic fractions after treatment with CLT. Spectrophotometery was used to analyze the mitochondrial bound and soluble fraction of Hexokinase by means of relative enzymatic activity. Results: Our preliminary data have shown that CLT sensitizes MCF-7 cells to radiation in a dose and incubation time dependent manner up. We have also demonstrated that there are two radiosensitizing periods in MCF-7 cells with the first corresponding to the cycle arrest after 24 hours observed in other cell lines. The second radiosensitizing period occurs with incubation in CLT after irradiation which reaches maximum effect around 24 hours of incubation time. Preliminary data from our Hexokinase detachment assay show a factor of two increase in the ratio of unbound to bound Hexokinase when comparing incubation for 24 hours inmore » media containing 0 and 20 µM CLT. Conclusion: This study and others indicate CLT as a possible radiosensitizing agent in cancer therapies. While CLT itself shows toxicity to the liver in high doses, this study further demonstrates that disruption of the Warburg Effect and unbinding of mitochondrial bound Hexokinase as a possible pathway for cancer treatment.« less

Authors:
;  [1]
  1. San Diego State University, San Diego, CA (United States)
Publication Date:
OSTI Identifier:
22649233
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; ELECTRIC POTENTIAL; HEXOKINASE; INCUBATION; MAMMARY GLANDS; MITOCHONDRIA; RADIATION DOSES; TIME DEPENDENCE

Citation Formats

Garcia, L, and Tambasco, M. SU-F-T-678: Clotrimazole Sensitizes MCF-7 Breast Cancer Cell Line to Radiation. United States: N. p., 2016. Web. doi:10.1118/1.4956864.
Garcia, L, & Tambasco, M. SU-F-T-678: Clotrimazole Sensitizes MCF-7 Breast Cancer Cell Line to Radiation. United States. doi:10.1118/1.4956864.
Garcia, L, and Tambasco, M. 2016. "SU-F-T-678: Clotrimazole Sensitizes MCF-7 Breast Cancer Cell Line to Radiation". United States. doi:10.1118/1.4956864.
@article{osti_22649233,
title = {SU-F-T-678: Clotrimazole Sensitizes MCF-7 Breast Cancer Cell Line to Radiation},
author = {Garcia, L and Tambasco, M},
abstractNote = {Purpose: To study the effects of Clotrimazole (CLT) on radiosensitivity of MCF-7 Cells in correlation to detachment of Hexokinase II from the Voltage Dependent Anion Channel on the outer membrane of the mitochondria. Apoptotic fractions were also analyzed in relation to the detachment of Hexokinase. Methods: This study focused on the mammary adenocarcinoma cell line, MCF-7. Colony forming assays were used to analyze radiosensitization by CLT. Flow cytometry methods were used to analyze apoptotic vs necrotic fractions after treatment with CLT. Spectrophotometery was used to analyze the mitochondrial bound and soluble fraction of Hexokinase by means of relative enzymatic activity. Results: Our preliminary data have shown that CLT sensitizes MCF-7 cells to radiation in a dose and incubation time dependent manner up. We have also demonstrated that there are two radiosensitizing periods in MCF-7 cells with the first corresponding to the cycle arrest after 24 hours observed in other cell lines. The second radiosensitizing period occurs with incubation in CLT after irradiation which reaches maximum effect around 24 hours of incubation time. Preliminary data from our Hexokinase detachment assay show a factor of two increase in the ratio of unbound to bound Hexokinase when comparing incubation for 24 hours in media containing 0 and 20 µM CLT. Conclusion: This study and others indicate CLT as a possible radiosensitizing agent in cancer therapies. While CLT itself shows toxicity to the liver in high doses, this study further demonstrates that disruption of the Warburg Effect and unbinding of mitochondrial bound Hexokinase as a possible pathway for cancer treatment.},
doi = {10.1118/1.4956864},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: In order to determine the synergistic effect of clotrimazole on radiosensitivity of A549 lung cancer cells, and the effect of oxidative pathways on modulating radiosensitivity, we studied how these cells survived under varying amounts of radiation and clotrimazole as well ass when glucose was switched for galactose media. Methods: The glucose media was used to determine the presence of any synergistic effect of clotrimazole on radiation using values of radiation and clotrimazole concentrations, varying from 0 – 8 Gy and 0 – 20 µM, respectively. As a galactose diet is known to activate oxidative pathways, which do not relymore » on hexokinase II (HK2), all trials were repeated using galactose media to determine the extent that HK2 unbinding from the mitochondrial membrane plays a role in modulating the observed radiosensitivity. An apoptosis vs. necrosis assay was implemented to find out the modality by which cell death occurred. An intracellular lactate assay was performed to exhibit the extent of anaerobic glycolysis. Results: After running the primary experiments, it was found that in glucose media, the cancer cells showed higher cell kill when clotrimazole was added to the media, followed by the cells being irradiated. Conclusion: Given the preliminary results it is validated that under higher concentrations of clotrimazole, in glucose media, A549 lung cancer cells exhibit a lower amount of survival. While all results have not yet been gathered. We anticipate that in galactose media the A549 cells will exhibit this effect to a much smaller degree, if at all.« less
  • The radiation response of drug-resistant variants of the human tumor breast cancer cell line MCF-7 has been investigated. Two sublines, one resistant to adriamycin (ADRR) and the other to melphalan (MLNR), have been selected by exposure to stepwise increasing concentrations of the respective drugs. ADRR cells are 200-fold resistant to adriamycin and cross-resistant to a number of other drugs and are characterized by the presence of elevated levels of selenium-dependent glutathione peroxidase and glutathione-S-transferase. MLNR cells are fourfold resistant to melphalan and cross-resistant to some other drugs. The only mechanism of drug resistance established for MLNR cells to date ismore » an enhancement of DNA excision repair processes. While the spectrum of drug resistance and the underlying mechanisms differ for the two sublines, their response to radiation is qualitatively similar. Radiation survival curves for ADRR and MLNR cells differ from that for wild-type cells in a complex manner with, for the linear-quadratic model, a decrease in the size of alpha and an increase in the size of beta. There is a concomitant decrease in the size of the alpha/beta ratio which is greater for ADRR cells than for MLNR cells. Analysis of results using the multitarget model gave values of D0 of 1.48, 1.43, and 1.67 Gy for MCF-7 cells are not a consequence of cell kinetic differences between these sublines. Results of split-dose experiments indicated that for both drug-resistant sublines the extent of sublethal damage repair reflected the width of the shoulder on the single-dose survival curve. For MCF-7 cells in the stationary phase of growth, the drug-resistant sublines did not show cross-resistance to radiation; however, delayed subculture following irradiation of stationary-phase cultures increased survival to a greater extent for ADRR and MLNR cells than for wild-type cells.« less
  • Two drug-resistant variants of the human breast cancer cell line MCF-7 have been shown previously to exhibit radiation resistance associated with an increase in the size of the shoulder on the radiation survival curve. In the present study, glutathione (GSH) depletion was achieved by exposure of cells to buthionine sulfoximine (BSO) with, in some cases, additional treatment with dimethyl fumarate. Levels of GSH in the adriamycin-resistant subline MCF-7 ADRR are initially lower than in the other two sublines and are depleted to a greater extent by exposure to BSO. Wild-type MCF-7 cells are not sensitized by GSH depletion when irradiatedmore » under aerated conditions but are sensitized under hypoxic conditions to an extent which is related to the level of GSH depletion. In contrast both the drug-resistant sublines (MCF-7 ADRR and the melphalan-resistant line MCF-7 MLNR) are radiosensitized by GSH depletion under both aerated and hypoxic conditions. It is hypothesized that in the case of the MCF-7 ADRR cell line, which expresses high levels of the GSH-associated redox enzyme systems, GSH-S-transferase and GSH-peroxidase (GSH-Px), radiosensitization results when GSH-Px is inhibited in GSH-depleted cells. The reasons for radiosensitization of aerated MCF-7 MLNR cells cannot be explained on this basis, however, and other factors are being examined.« less
  • Purpose: The requirement for a well-tolerated and highly effective radiosensitizer that preferentially sensitizes tumor cells at multiple levels of radioresistance remains largely unmet. 2-Methoxyestradiol (2ME) has polypharmacological profiles that target multiple signaling pathways involved in the development of radioresistance. In the current study, we investigated the radiosensitizing effect of 2ME on the radioresistant breast cancer MCF-7/FIR cell line and explored the underlying mechanisms. Methods and Materials: The radiosensitizing effect of 2ME was evaluated on the basis of cell death and clonogenic survival. Formation of reactive oxygen species (ROS), apoptosis, and cell cycle progression were assessed by flow cytometry. Radiation-induced DNAmore » damage was evaluated on the basis of histone {gamma}-H2AX phosphorylation and foci formation. Immunoblotting was used to assess the effects of {gamma} radiation and/or 2ME on radioresistance pathways. Results: Our data demonstrate that MCF-7/FIR cells expressed higher levels of Bcl-2 and HIF-1{alpha} and displayed a lower ROS phenotype than the parental MCF-7 cells. Treatment of parental MCF-7 cells with 2ME (0.5 {mu}M) had minimal effect on {gamma} radiation-induced cell proliferation and surviving fractions. On the contrary, in MCF-7/FIR cells, treatment with 2ME significantly enhanced {gamma} radiation-induced reduction in cell proliferation and surviving fraction. This combination was effective in activating apoptosis, arresting the cell cycle at the G{sub 2}/M phase, and increasing the level of {gamma} radiation-induced ROS and the number of {gamma}-H2AX foci. In addition, 2ME significantly ameliorated {gamma} radiation-induced expression of the HIF-1{alpha} transcription factor and its downstream targets AKT/mTOR. Conclusion: 2ME preferentially sensitizes radioresistant MCF-7/FIR cells to {gamma} radiation by targeting multiple signaling pathways involved in the development of radioresistance. This polypharmacological profile qualifies 2ME as a promising radiosensitizer in the treatment of radioresistant breast cancer cells and warrants systematic preclinical and clinical studies.« less
  • Highlights: • Suppression of PKM2 sensitizes triple-negative breast cancer cells to doxorubicin. • Repression of PKM2 affects the glycolysis and decreases ATP production. • Downregulation of PKM2 increases the intracellular accumulation of doxorubicin. • Inhibition of PKM2 enhances the antitumor efficacy of doxorubicin in vivo. - Abstract: Cancer cells alter regular metabolic pathways in order to sustain rapid proliferation. One example of metabolic remodeling in cancerous tissue is the upregulation of pyruvate kinase isoenzyme M2 (PKM2), which is involved in aerobic glycolysis. Indeed, PKM2 has previously been identified as a tumor biomarker and as a potential target for cancer therapy.more » Here, we examined the effects of combined treatment with doxorubicin and anti-PKM2 small interfering RNA (siRNA) on triple-negative breast cancer (TNBC). The suppression of PKM2 resulted in changes in glucose metabolism, leading to decreased synthesis of adenosine triphosphate (ATP). Reduced levels of ATP resulted in the intracellular accumulation of doxorubicin, consequently enhancing the therapeutic efficacy of this drug in several triple-negative breast cancer cell lines. Furthermore, the combined effect of PKM2 siRNA and doxorubicin was evaluated in an in vivo MDA-MB-231 orthotopic breast cancer model. The siRNA was systemically administered through a polyethylenimine (PEI)-based delivery system that has been extensively used. We demonstrate that the combination treatment showed superior anticancer efficacy as compared to doxorubicin alone. These findings suggest that targeting PKM2 can increase the efficacy of chemotherapy, potentially providing a new approach for improving the outcome of chemotherapy in patients with TNBC.« less