skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-637: Single-Isocenter Versus Multiple-Isocenter VMAT SRS for Unusual Multiple Metastasis Case with Two Widely Separated Lesions

Abstract

Purpose: Single-isocenter (SI) volumetric modulated arc therapy has been shown to be an effective and efficient approach to multiple metastasis radiosurgery. However, certain extreme cases raise the question of whether multiple-isocenter (MI) approaches can still generate superior plans. In this study, we ask this question with respect to a clinical case with two very widely separated lesions. Methods: A patient with two widely separated (d = 12cm) tumors was treated with SI-VMAT SRS using 10MV flattening filter free (FFF) beam with high-definition multi-leaf collimator (HD-MLC, 2.5/5mm) in two non-coplanar arcs using concentric rings to enforce steep gradient. Because of lesion positioning with respect to collimator angle selection, lesions were treated by 5mm leaves. We re-planned the case with a congruent arc arrangement but separate isocenter for each lesion. In this manner, lesions were treated by 2.5mm leaves. Conformity index (CI), V50%, and mean brain dose were compared. Results: Neither conformity (CI-SI = 1.12, CI-MI = 1.08) nor V50% (V50%-SI =8.82cc, V50%-MI =8.81cc) were improved by utilizing a separate isocenter for each lesion. Mean brain dose was slightly reduced (dmean-SI = 118.4 cGy, dmean-MI = 88.7 cGy) by using multiple isocenters. Conclusion: For this case with a lesion at the apexmore » of the brain and another distantly located at the base of skull, employing a separate isocenter for each target did not meaningfully improve plan quality. Single-isocenter VMAT has been shown feasible and equivalent to multiple-isocenter VMAT for multiple metastasis cases in general. In this extreme case, single- and multiple- isocenter VMAT were also equivalent. If rotational setup errors are appropriately corrected, the increased delivery efficiency of the single-isocenter approach renders it preferable to the multiple isocenter approach. Dr’s Thomas, Popple, and Fiveash have all received honoraria from Varian Medical Systems for discussing their experiences with stereotactic radiosurgery.« less

Authors:
; ;  [1]
  1. The University of Alabama at Birmingham, Birmingham, AL (United States)
Publication Date:
OSTI Identifier:
22649197
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; BRAIN; METASTASES; RADIOTHERAPY; SURGERY

Citation Formats

Thomas, EM, Popple, RA, and Fiveash, JB. SU-F-T-637: Single-Isocenter Versus Multiple-Isocenter VMAT SRS for Unusual Multiple Metastasis Case with Two Widely Separated Lesions. United States: N. p., 2016. Web. doi:10.1118/1.4956822.
Thomas, EM, Popple, RA, & Fiveash, JB. SU-F-T-637: Single-Isocenter Versus Multiple-Isocenter VMAT SRS for Unusual Multiple Metastasis Case with Two Widely Separated Lesions. United States. doi:10.1118/1.4956822.
Thomas, EM, Popple, RA, and Fiveash, JB. 2016. "SU-F-T-637: Single-Isocenter Versus Multiple-Isocenter VMAT SRS for Unusual Multiple Metastasis Case with Two Widely Separated Lesions". United States. doi:10.1118/1.4956822.
@article{osti_22649197,
title = {SU-F-T-637: Single-Isocenter Versus Multiple-Isocenter VMAT SRS for Unusual Multiple Metastasis Case with Two Widely Separated Lesions},
author = {Thomas, EM and Popple, RA and Fiveash, JB},
abstractNote = {Purpose: Single-isocenter (SI) volumetric modulated arc therapy has been shown to be an effective and efficient approach to multiple metastasis radiosurgery. However, certain extreme cases raise the question of whether multiple-isocenter (MI) approaches can still generate superior plans. In this study, we ask this question with respect to a clinical case with two very widely separated lesions. Methods: A patient with two widely separated (d = 12cm) tumors was treated with SI-VMAT SRS using 10MV flattening filter free (FFF) beam with high-definition multi-leaf collimator (HD-MLC, 2.5/5mm) in two non-coplanar arcs using concentric rings to enforce steep gradient. Because of lesion positioning with respect to collimator angle selection, lesions were treated by 5mm leaves. We re-planned the case with a congruent arc arrangement but separate isocenter for each lesion. In this manner, lesions were treated by 2.5mm leaves. Conformity index (CI), V50%, and mean brain dose were compared. Results: Neither conformity (CI-SI = 1.12, CI-MI = 1.08) nor V50% (V50%-SI =8.82cc, V50%-MI =8.81cc) were improved by utilizing a separate isocenter for each lesion. Mean brain dose was slightly reduced (dmean-SI = 118.4 cGy, dmean-MI = 88.7 cGy) by using multiple isocenters. Conclusion: For this case with a lesion at the apex of the brain and another distantly located at the base of skull, employing a separate isocenter for each target did not meaningfully improve plan quality. Single-isocenter VMAT has been shown feasible and equivalent to multiple-isocenter VMAT for multiple metastasis cases in general. In this extreme case, single- and multiple- isocenter VMAT were also equivalent. If rotational setup errors are appropriately corrected, the increased delivery efficiency of the single-isocenter approach renders it preferable to the multiple isocenter approach. Dr’s Thomas, Popple, and Fiveash have all received honoraria from Varian Medical Systems for discussing their experiences with stereotactic radiosurgery.},
doi = {10.1118/1.4956822},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: To develop an optimization algorithm to reduce normal brain dose by optimizing couch and collimator angles for single isocenter multiple targets treatment of stereotactic radiosurgery. Methods: Three metastatic brain lesions were retrospectively planned using single-isocenter volumetric modulated arc therapy (VMAT). Three matrices were developed to calculate the projection of each lesion on Beam’s Eye View (BEV) by the rotating couch, collimator and gantry respectively. The island blocking problem was addressed by computing the total area of open space between any two lesions with shared MLC leaf pairs. The couch and collimator angles resulting in the smallest open areas weremore » the optimized angles for each treatment arc. Two treatment plans with and without couch and collimator angle optimization were developed using the same objective functions and to achieve 99% of each target volume receiving full prescription dose of 18Gy. Plan quality was evaluated by calculating each target’s Conformity Index (CI), Gradient Index (GI), and Homogeneity index (HI), and absolute volume of normal brain V8Gy, V10Gy, V12Gy, and V14Gy. Results: Using the new couch/collimator optimization strategy, dose to normal brain tissue was reduced substantially. V8, V10, V12, and V14 decreased by 2.3%, 3.6%, 3.5%, and 6%, respectively. There were no significant differences in the conformity index, gradient index, and homogeneity index between two treatment plans with and without the new optimization algorithm. Conclusion: We have developed a solution to the island blocking problem in delivering radiation to multiple brain metastases with shared isocenter. Significant reduction in dose to normal brain was achieved by using optimal couch and collimator angles that minimize total area of open space between any of the two lesions with shared MLC leaf pairs. This technique has been integrated into Eclipse treatment system using scripting API.« less
  • Purpose: Single-isocenter VMAT has been shown able to create high quality plans for complex intracranial multiple metastasis SRS cases. Linacs capable of the technique are typically outfitted with an MLC that consists of a combination of 5 mm and 10 mm leaves (standard) or 2.5 mm and 5 mm leaves (high-definition). In this study, we test the hypothesis that thinner collimator leaves are associated with improved plan quality. Methods: Ten multiple metastasis cases were identified and planned for VMAT SRS using a 10 MV flattening filter free beam. Plans were created for a standard (std) and a high-definition (HD) MLC.more » Published values for leaf transmission factor and dosimetric leaf gap were utilized. All other parameters were invariant. Conformity (plan and individual target), moderate isodose spill (V50%), and low isodose spill (mean brain dose) were selected for analysis. Results: Compared to standard MLC, HD-MLC improved overall plan conformity (median: Paddick CI-HD = 0.83, Paddick CI-std = 0.79; p = 0.004 and median: RTOG CI-HD =1.18, RTOG CI-std =1.24; p = 0.01 ), improved individual lesion conformity (median: Paddick CI-HD,i =0.77, Paddick CI-std,i =0.72; p < 0.001 and median: RTOG CI-HD,i = 1.28, RTOG CI-std,i =1.35; p < 0.001), improved moderate isodose spill (median: V50%-HD = 37.0 cc, V50%-std = 45.7 cc; p = 0.002), and improved low dose spill (median: dmean-HD = 2.90 Gy, dmean-std = 3.19 Gy; p = 0.002). Conclusion: For the single-isocenter VMAT SRS of multiple metastasis plans examined, use of HD-MLC modestly improved conformity, moderate isodose, and low isodose spill compared to standard MLC. However, in all cases we were able to generate clinically acceptable plans with the standard MLC. More work is need to further quantify the difference in cases with higher numbers of small targets and to better understand any potential clinical significance. This research was supported in part by Varian Medical Systems.« less
  • Purpose: This study utilizes the Taguchi Method to evaluate the VMAT planning parameters of single isocenter treatment plans for multiple brain metastases. An optimization model based on Taguchi and utility concept is employed to optimize the planning parameters including: arc arrangement, calculation grid size, calculation model, and beam energy on multiple performance characteristics namely conformity index and dose to normal brain. Methods: Treatment plans, each with 4 metastatic brain lesions were planned using single isocenter technique. The collimator angles were optimized to avoid open areas. In this analysis four planning parameters (a–d) were considered: (a)-Arc arrangements: set1: Gantry 181cw179 couch0;more » gantry179ccw0, couch315; and gantry0ccw181, couch45. set2: set1 plus additional arc: Gantry 0cw179, couch270. (b)-Energy: 6-MV; 6MV-FFF (c)-Calculation grid size: 1mm; 1.5mm (d)-Calculation models: AAA; Acuros Treatment planning was performed in Varian Eclipse (ver.11.0.30). A suitable orthogonal array was selected (L8) to perform the experiments. After conducting the experiments with the combinations of planning parameters the conformity index (CI) and the normal brain dose S/N ratio for each parameter was calculated. Optimum levels for the multiple response optimizations were determined. Results: We determined that the factors most affecting the conformity index are arc arrangement and beam energy. These tests were also used to evaluate dose to normal brain. In these evaluations, the significant parameters were grid size and calculation model. Using the utility concept we determined the combination of each of the four factors tested in this study that most significantly influence quality of the resulting treatment plans: (a)-arc arrangement-set2, (b)-6MV, (c)-calc.grid 1mm, (d)-Acuros algorithm. Overall, the dominant significant influences on plan quality are (a)-arcarrangement, and (b)-beamenergy. Conclusion: Results were analyzed using ANOVA and were found to be within the confidence interval. Further investigation using this methodology. Such parameters might include: virtual OAR and optimization criterion such as normal tissue objective.« less
  • To investigate the doses received by the hippocampus and normal brain tissue during a course of stereotactic radiation therapy using a single isocenter (SI)–based or multiple isocenter (MI)–based treatment planning in patients with less than 4 brain metastases. In total, 10 patients with magnetic resonance imaging (MRI) demonstrating 2-3 brain metastases were included in this retrospective study, and 2 sets of stereotactic intensity-modulated radiation therapy (IMRT) treatment plans (SI vs MI) were generated. The hippocampus was contoured on SPGR sequences, and doses received by the hippocampus and the brain were calculated and compared between the 2 treatment techniques. A totalmore » of 23 lesions in 10 patients were evaluated. The median tumor volume, the right hippocampus volume, and the left hippocampus volume were 3.15, 3.24, and 2.63 mL, respectively. In comparing the 2 treatment plans, there was no difference in the planning target volume (PTV) coverage except in the tail for the dose-volume histogram (DVH) curve. The only statistically significant dosimetric parameter was the V{sub 100}. All of the other measured dosimetric parameters including the V{sub 95}, V{sub 99}, and D{sub 100} were not significantly different between the 2 treatment planning techniques. None of the dosimetric parameters evaluated for the hippocampus revealed any statistically significant difference between the MI and SI plans. The total brain doses were slightly higher in the SI plans, especially in the lower dose region, although this difference was not statistically different. The use of SI-based treatment plan resulted in a 35% reduction in beam-on time. The use of SI treatments for patients with up to 3 brain metastases produces similar PTV coverage and similar normal tissue doses to the hippocampus and the brain when compared with MI plans. SI treatment planning should be considered in patients with multiple brain metastases undergoing stereotactic treatment.« less
  • Purpose: Recent trends in stereotactic radiosurgery use multifocal volumetric modulated arc therapy (VMAT) plans to simultaneously treat several distinct targets. Conventional verification often involves low resolution measurements in a single plane, a cylinder, or intersecting planes of diodes or ion chambers. This work presents an investigation into the consistency and reproducibility of this new treatment technique using a comprehensive commissioned high-resolution 3D dosimetry system (PRESAGE{sup ®}/Optical-CT).Methods: A complex VMAT plan consisting of a single isocenter but five separate targets was created in Eclipse for a head phantom containing a cylindrical PRESAGE{sup ®} dosimetry insert of 11 cm diameter and height.more » The plan contained five VMAT arcs delivering target doses from 12 to 20 Gy. The treatment was delivered to four dosimeters positioned in the head phantom and repeated four times, yielding four separate 3D dosimetry verifications. Each delivery was completely independent and was given after image guided radiation therapy (IGRT) positioning using Brainlab ExacTrac and cone beam computed tomography. A final delivery was given to a modified insert containing a pin-point ion chamber enabling calibration of PRESAGE{sup ®} 3D data to dose. Dosimetric data were read out in an optical-CT scanner. Consistency and reproducibility of the treatment technique (including IGRT setup) was investigated by comparing the dose distributions in the four inserts, and with the predicted treatment planning system distribution.Results: Dose distributions from the four dosimeters were registered and analyzed to determine the mean and standard deviation at all points throughout the dosimeters. A dose standard deviation of <3% was found from dosimeter to dosimeter. Global 3D gamma maps show that the predicted and measured dose matched well [3D gamma passing rate was 98.0% (3%, 2 mm)].Conclusions: The deliveries of the irradiation were found to be consistent and matched the treatment plan, demonstrating high accuracy and reproducibility of both the treatment machine and the IGRT procedure. The complexity of the treatment (multiple arcs) and dosimetry (multiple strong gradients) pose a substantial challenge for comprehensive verification. 3D dosimetry can be uniquely effective in this scenario.« less