skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-635: Lung SBRT: Dosimetric and Treatment Time Comparison of Volumetric-Modulated Arc Therapy and Three-Dimensional Conformal Radiotherapy in Clinically Treated Cases

Abstract

Purpose: To compare three-dimensional conformal radiotherapy (3D CRT) and volumetric-modulated arc therapy (VMAT) in lung stereotactic body radiation therapy (SBRT) Methods: A retrospective study of clinically treated lung SBRT cases treated between 2010 and 2015 at our hospital was performed. All treatment modalities were included in this evaluation (VMAT, 3D CRT, static IMRT, and dynamic conformal arc therapy). However, the majority of treatment modalities were either VMAT or 3D CRT. Treatment times of patients and dosimetric plan quality metrics were compared. Treatment times were calculated based on the time the therapist opened and closed the patient’s treatment plan. This treatment time closely approximates the utilization time of the treatment room. The dosimetric plan quality metrics evaluated include ICRU conformity index, the volume of 105% prescribed dose outside PTV, the ratio of volume of 50% prescribed dose to the volume of PTV, the percentage of maximum dose at 2 cm away from PTV to the prescribed dose, and the V20 (percentage of lung volume receiving 20 Gy or more). Results: Treatment time comparisons show that on average VMAT has shorter treatment times than 3D CRT. Dose conformity, defined by the ICRU conformity index, and high dose spillage, defined by the volumemore » of 105% dose outside the PTV, is reduced when using VMAT compared to 3D CRT. V20 and intermediate dose spillage/fall-off metrics of VMAT and 3D are not significantly different. Conclusion: Clinically treated lung SBRT cases indicate VMAT is superior to 3D with regard to shorter treatment times, plan dose conformity, and plan high dose spillage.« less

Authors:
; ; ; ;  [1]
  1. Stony Brook Medicine, Stony Brook, NY (United States)
Publication Date:
OSTI Identifier:
22649195
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; LUNGS; METRICS; RADIATION DOSES; RADIOTHERAPY; THREE-DIMENSIONAL CALCULATIONS

Citation Formats

Han, J, Xu, Z, Baker, J, Hsia, A, and Ryu, S. SU-F-T-635: Lung SBRT: Dosimetric and Treatment Time Comparison of Volumetric-Modulated Arc Therapy and Three-Dimensional Conformal Radiotherapy in Clinically Treated Cases. United States: N. p., 2016. Web. doi:10.1118/1.4956820.
Han, J, Xu, Z, Baker, J, Hsia, A, & Ryu, S. SU-F-T-635: Lung SBRT: Dosimetric and Treatment Time Comparison of Volumetric-Modulated Arc Therapy and Three-Dimensional Conformal Radiotherapy in Clinically Treated Cases. United States. doi:10.1118/1.4956820.
Han, J, Xu, Z, Baker, J, Hsia, A, and Ryu, S. 2016. "SU-F-T-635: Lung SBRT: Dosimetric and Treatment Time Comparison of Volumetric-Modulated Arc Therapy and Three-Dimensional Conformal Radiotherapy in Clinically Treated Cases". United States. doi:10.1118/1.4956820.
@article{osti_22649195,
title = {SU-F-T-635: Lung SBRT: Dosimetric and Treatment Time Comparison of Volumetric-Modulated Arc Therapy and Three-Dimensional Conformal Radiotherapy in Clinically Treated Cases},
author = {Han, J and Xu, Z and Baker, J and Hsia, A and Ryu, S},
abstractNote = {Purpose: To compare three-dimensional conformal radiotherapy (3D CRT) and volumetric-modulated arc therapy (VMAT) in lung stereotactic body radiation therapy (SBRT) Methods: A retrospective study of clinically treated lung SBRT cases treated between 2010 and 2015 at our hospital was performed. All treatment modalities were included in this evaluation (VMAT, 3D CRT, static IMRT, and dynamic conformal arc therapy). However, the majority of treatment modalities were either VMAT or 3D CRT. Treatment times of patients and dosimetric plan quality metrics were compared. Treatment times were calculated based on the time the therapist opened and closed the patient’s treatment plan. This treatment time closely approximates the utilization time of the treatment room. The dosimetric plan quality metrics evaluated include ICRU conformity index, the volume of 105% prescribed dose outside PTV, the ratio of volume of 50% prescribed dose to the volume of PTV, the percentage of maximum dose at 2 cm away from PTV to the prescribed dose, and the V20 (percentage of lung volume receiving 20 Gy or more). Results: Treatment time comparisons show that on average VMAT has shorter treatment times than 3D CRT. Dose conformity, defined by the ICRU conformity index, and high dose spillage, defined by the volume of 105% dose outside the PTV, is reduced when using VMAT compared to 3D CRT. V20 and intermediate dose spillage/fall-off metrics of VMAT and 3D are not significantly different. Conclusion: Clinically treated lung SBRT cases indicate VMAT is superior to 3D with regard to shorter treatment times, plan dose conformity, and plan high dose spillage.},
doi = {10.1118/1.4956820},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • To compare the dosimetric differences between the single-arc volumetric-modulated arc therapy (sVMAT), 3-dimensional conformal radiotherapy (3D-CRT), and intensity-modulated radiotherapy (IMRT) techniques in treatment planning for gastric cancer as adjuvant radiotherapy. Twelve patients were retrospectively analyzed. In each patient's case, the parameters were compared based on the dose-volume histogram (DVH) of the sVMAT, 3D-CRT, and IMRT plans, respectively. Three techniques showed similar target dose coverage. The maximum and mean doses of the target were significantly higher in the sVMAT plans than that in 3D-CRT plans and in the 3D-CRT/IMRT plans, respectively, but these differences were clinically acceptable. The IMRT and sVMATmore » plans successfully achieved better target dose conformity, reduced the V{sub 20/30}, and mean dose of the left kidney, as well as the V{sub 20/30} of the liver, compared with the 3D-CRT plans. And the sVMAT technique reduced the V{sub 20} of the liver much significantly. Although the maximum dose of the spinal cord were much higher in the IMRT and sVMAT plans, respectively (mean 36.4 vs 39.5 and 40.6 Gy), these data were still under the constraints. Not much difference was found in the analysis of the parameters of the right kidney, intestine, and heart. The IMRT and sVMAT plans achieved similar dose distribution to the target, but superior to the 3D-CRT plans, in adjuvant radiotherapy for gastric cancer. The sVMAT technique improved the dose sparings of the left kidney and liver, compared with the 3D-CRT technique, but showed few dosimetric advantages over the IMRT technique. Studies are warranted to evaluate the clinical benefits of the VMAT treatment for patients with gastric cancer after surgery in the future.« less
  • Purpose: Cranial irradiation in pediatric patients is associated with serious long-term adverse effects. We sought to determine whether both three-dimensional conformal proton radiotherapy (3D-PRT) and intensity-modulated proton therapy (IMPT) compared with intensity-modulated radiotherapy (IMRT) decrease integral dose to brain areas known to harbor neuronal stem cells, major blood vessels, and other normal brain structures for pediatric patients with craniopharyngiomas. Methods and Materials: IMRT, forward planned, passive scattering proton, and IMPT plans were generated and optimized for 10 pediatric patients. The dose was 50.4 Gy (or cobalt Gy equivalent) delivered in 28 fractions with the requirement for planning target volume (PTV)more » coverage of 95% or better. Integral dose data were calculated from differential dose-volume histograms. Results: The PTV target coverage was adequate for all modalities. IMRT and IMPT yielded the most conformal plans in comparison to 3D-PRT. Compared with IMRT, 3D-PRT and IMPT plans had a relative reduction of integral dose to the hippocampus (3D-PRT, 20.4; IMPT, 51.3%{sup Asterisk-Operator }), dentate gyrus (27.3, 75.0%{sup Asterisk-Operator }), and subventricular zone (4.5, 57.8%{sup Asterisk-Operator }). Vascular organs at risk also had reduced integral dose with the use of proton therapy (anterior cerebral arteries, 33.3{sup Asterisk-Operator }, 100.0%{sup Asterisk-Operator }; middle cerebral arteries, 25.9%{sup Asterisk-Operator }, 100%{sup Asterisk-Operator }; anterior communicating arteries, 30.8{sup Asterisk-Operator }, 41.7%{sup Asterisk-Operator }; and carotid arteries, 51.5{sup Asterisk-Operator }, 77.6{sup Asterisk-Operator }). Relative reduction of integral dose to the infratentorial brain (190.7{sup Asterisk-Operator }, 109.7%{sup Asterisk-Operator }), supratentorial brain without PTV (9.6, 26.8%{sup Asterisk-Operator }), brainstem (45.6, 22.4%{sup Asterisk-Operator }), and whole brain without PTV (19.4{sup Asterisk-Operator }, 34.4%{sup Asterisk-Operator }) were recorded with the use of proton therapy. ({sup Asterisk-Operator }Differences were significant based on Friedman's test with Bonferroni-Dunn correction, {alpha} = 0.05) Conclusions: The current study found that proton therapy was able to avoid excess integral radiation dose to a variety of normal structures at all dose levels while maintaining equal target coverage. Future studies will examine the clinical benefits of these dosimetric advantages.« less
  • With traditional photon therapy to treat large postoperative pancreatic target volume, it often leads to poor tolerance of the therapy delivered and may contribute to interrupted treatment course. This study was performed to evaluate the potential advantage of using passive-scattering (PS) and modulated-scanning (MS) proton therapy (PT) to reduce normal tissue exposure in postoperative pancreatic cancer treatment. A total of 11 patients with postoperative pancreatic cancer who had been previously treated with PS PT in University of Pennsylvania Roberts Proton Therapy Center from 2010 to 2013 were identified. The clinical target volume (CTV) includes the pancreatic tumor bed as wellmore » as the adjacent high-risk nodal areas. Internal (iCTV) was generated from 4-dimensional (4D) computed tomography (CT), taking into account target motion from breathing cycle. Three-field and 4-field 3D conformal radiation therapy (3DCRT), 5-field intensity-modulated radiation therapy, 2-arc volumetric-modulated radiation therapy, and 2-field PS and MS PT were created on the patients’ average CT. All the plans delivered 50.4 Gy to the planning target volume (PTV). Overall, 98% of PTV was covered by 95% of the prescription dose and 99% of iCTV received 98% prescription dose. The results show that all the proton plans offer significant lower doses to the left kidney (mean and V{sub 18} {sub Gy}), stomach (mean and V{sub 20} {sub Gy}), and cord (maximum dose) compared with all the photon plans, except 3-field 3DCRT in cord maximum dose. In addition, MS PT also provides lower doses to the right kidney (mean and V{sub 18} {sub Gy}), liver (mean dose), total bowel (V{sub 20} {sub Gy} and mean dose), and small bowel (V{sub 15} {sub Gy} absolute volume ratio) compared with all the photon plans and PS PT. The dosimetric advantage of PT points to the possibility of treating tumor bed and comprehensive nodal areas while providing a more tolerable treatment course that could be used for dose escalation and combining with radiosensitizing chemotherapy.« less
  • Purpose: Volumetric modulated arc therapy (VMAT) is a novel form of intensity-modulated radiotherapy (IMRT) optimization that allows the radiation dose to be delivered in a single gantry rotation of up to 360{sup o}, using either a constant dose rate (cdr-VMAT) or variable dose rate (vdr-VMAT) during rotation. The goal of this study was to compare VMAT prostate RT plans with three-dimensional conformal RT (3D-CRT) and IMRT plans. Patients and Methods: The 3D-CRT, five-field IMRT, cdr-VMAT, and vdr-VMAT RT plans were created for 10 computed tomography data sets from patients undergoing RT for prostate cancer. The parameters evaluated included the dosesmore » to organs at risk, equivalent uniform doses, dose homogeneity and conformality, and monitor units required for delivery of a 2-Gy fraction. Results: The IMRT and both VMAT techniques resulted in lower doses to normal critical structures than 3D-CRT plans for nearly all dosimetric endpoints analyzed. The lowest doses to organs at risk and most favorable equivalent uniform doses were achieved with vdr-VMAT, which was significantly better than IMRT for the rectal and femoral head dosimetric endpoints (p < 0.05) and significantly better than cdr-VMAT for most bladder and rectal endpoints (p < 0.05). The vdr-VMAT and cdr-VMAT plans required fewer monitor units than did the IMRT plans (relative reduction of 42% and 38%, respectively; p = 0.005) but more than for the 3D-CRT plans (p = 0.005). Conclusion: The IMRT and VMAT techniques achieved highly conformal treatment plans. The vdr-VMAT technique resulted in more favorable dose distributions than the IMRT or cdr-VMAT techniques, and reduced the monitor units required compared with IMRT.« less
  • The primary objective of this study was to compare dosimetric variables as well as treatment times of multiple static fields (MSFs), conformal arcs (CAs), and volumetric modulated arc therapy (VMAT) techniques for the treatment of early stage lung cancer using stereotactic body radiotherapy (SBRT). Treatments of 23 patients previously treated with MSF of 48 Gy to 95% of the planning target volume (PTV) in 4 fractions were replanned using CA and VMAT techniques. Dosimetric parameters of the Radiation Therapy Oncology Group (RTOG) 0915 trial were evaluated, along with the van't Riet conformation number (CN), monitor units (MUs), and actual andmore » calculated treatment times. Paired t-tests for noninferiority were used to compare the 3 techniques. CA had significant dosimetric improvements over MSF for the ratio of the prescription isodose volume to PTV (R{sub 100%}, p < 0.0001), the maximum dose 2 cm away from the PTV (D{sub 2} {sub cm}, p = 0.005), and van't Riet CN (p < 0.0001). CA was not statistically inferior to MSF for the 50% prescription isodose volume to PTV (R{sub 50%}, p = 0.05). VMAT was significantly better than CA for R{sub 100%} (p < 0.0001), R{sub 50%} (p < 0.0001), D{sub 2} {sub cm} (p = 0.006), and CN (p < 0.0001). CA plans had significantly shorter treatment times than those of VMAT (p < 0.0001). Both CA and VMAT planning showed significant dosimetric improvements and shorter treatment times over those of MSF. VMAT showed the most favorable dosimetry of all 3 techniques; however, the dosimetric effect of tumor motion was not evaluated. CA plans were significantly faster to treat, and minimize the interplay of tumor motion and dynamic multileaf collimator (MLC) motion effects. Given these results, CA has become the treatment technique of choice at our facility.« less