skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-625: Optimal Treatment Planning Strategy Among Arc Arrangements for Prostate SBRT with VMAT Technique

Abstract

Purpose: The purpose of this study is to determine the optimal treatment planning strategy among the different arc arrangements for prostate stereotactic body radiotherapy (SBRT) plans with volumetric modulated arc therapy (VMAT). Methods: Ten patients with prostate cancer were selected. The SBRT-VMAT plans for each patient were generated with single-full (181° to 179°; 1FA), single-partial (240° to 120°; 1PA), double-full (181° to 179° and 179° to 181°; 2FA), and double-partial (240° to 120° and 120° to 240°; 2PA) arc arrangements. The prescription dose was 42.7 Gy in 7 fractions. Dose distribution was calculated using a 10-MV flattening-filter-free beam and the Acuros XB algorithm. Dosimetric parameters of target volume and organs at risk (OARs) were evaluated from cumulative dose-volume histograms on prostate SBRT-VMAT plans between single-arc (1FA and 1PA) and double-arc (2FA and 2PA) arrangements. Results: All plans using four arc arrangements were highly conformal with conformity index (CI)<1.05 and conformation number (CN)=0.91, and the doses to target volume were homogeneous (homogeneity index (HI)= 0.09 0.12). Pertaining to the dose to the OARs, there were significant differences in the rectum, left and right femoral head doses while having no difference in the bladder dose. The partial-arc (1PA and 2PA) had relativelymore » high reductions for the mean rectum dose compared to full-arc (1FA and 2FA). The near-to-maximum dose (D2%) and mean dose of the left and right femoral head were always lower on prostate SBRT-VMAT plan using the full-arc, when compared to the partial-arc arrangement. Conclusion: This study confirmed that prostate SBRT-VMAT using 1PA was feasible fast delivery time and produced equivalent target coverage and better rectum sparing, although the D2% and mean dose of the left and right femoral head increased slightly. Therefore, the results of this study suggest that the use of 1PA is an attractive choice for delivering prostate SBRT-VMAT.« less

Authors:
; ;  [1]; ;  [2];  [3]
  1. Seoul National University Bundang Hospital, Seongnam, Kyeonggi-do (Korea, Republic of)
  2. The Catholic University of Korea College of Medicine, Seoul (Korea, Republic of)
  3. Konkuk University Medical Center, Seoul (Korea, Republic of)
Publication Date:
OSTI Identifier:
22649186
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; PLANNING; PROSTATE; RADIATION DOSE DISTRIBUTIONS; RADIOTHERAPY; RECTUM

Citation Formats

Chung, J, Kim, J, Eom, K, Kang, S, Suh, T, and Lee, J. SU-F-T-625: Optimal Treatment Planning Strategy Among Arc Arrangements for Prostate SBRT with VMAT Technique. United States: N. p., 2016. Web. doi:10.1118/1.4956810.
Chung, J, Kim, J, Eom, K, Kang, S, Suh, T, & Lee, J. SU-F-T-625: Optimal Treatment Planning Strategy Among Arc Arrangements for Prostate SBRT with VMAT Technique. United States. doi:10.1118/1.4956810.
Chung, J, Kim, J, Eom, K, Kang, S, Suh, T, and Lee, J. 2016. "SU-F-T-625: Optimal Treatment Planning Strategy Among Arc Arrangements for Prostate SBRT with VMAT Technique". United States. doi:10.1118/1.4956810.
@article{osti_22649186,
title = {SU-F-T-625: Optimal Treatment Planning Strategy Among Arc Arrangements for Prostate SBRT with VMAT Technique},
author = {Chung, J and Kim, J and Eom, K and Kang, S and Suh, T and Lee, J},
abstractNote = {Purpose: The purpose of this study is to determine the optimal treatment planning strategy among the different arc arrangements for prostate stereotactic body radiotherapy (SBRT) plans with volumetric modulated arc therapy (VMAT). Methods: Ten patients with prostate cancer were selected. The SBRT-VMAT plans for each patient were generated with single-full (181° to 179°; 1FA), single-partial (240° to 120°; 1PA), double-full (181° to 179° and 179° to 181°; 2FA), and double-partial (240° to 120° and 120° to 240°; 2PA) arc arrangements. The prescription dose was 42.7 Gy in 7 fractions. Dose distribution was calculated using a 10-MV flattening-filter-free beam and the Acuros XB algorithm. Dosimetric parameters of target volume and organs at risk (OARs) were evaluated from cumulative dose-volume histograms on prostate SBRT-VMAT plans between single-arc (1FA and 1PA) and double-arc (2FA and 2PA) arrangements. Results: All plans using four arc arrangements were highly conformal with conformity index (CI)<1.05 and conformation number (CN)=0.91, and the doses to target volume were homogeneous (homogeneity index (HI)= 0.09 0.12). Pertaining to the dose to the OARs, there were significant differences in the rectum, left and right femoral head doses while having no difference in the bladder dose. The partial-arc (1PA and 2PA) had relatively high reductions for the mean rectum dose compared to full-arc (1FA and 2FA). The near-to-maximum dose (D2%) and mean dose of the left and right femoral head were always lower on prostate SBRT-VMAT plan using the full-arc, when compared to the partial-arc arrangement. Conclusion: This study confirmed that prostate SBRT-VMAT using 1PA was feasible fast delivery time and produced equivalent target coverage and better rectum sparing, although the D2% and mean dose of the left and right femoral head increased slightly. Therefore, the results of this study suggest that the use of 1PA is an attractive choice for delivering prostate SBRT-VMAT.},
doi = {10.1118/1.4956810},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: To assess optimal treatment planning approach of Volumetric Modulated Arc Therapy for lung Stereotactic Body Radiation Therapy (VMAT-SBRT). Methods: Subjects were 10 patients with lung cancer who had undergone 4DCT. The internal target volume (ITV) volume ranged from 2.6 to 16.5cm{sup 3} and the tumor motion ranged from 0 to 2cm. From 4DCT, which was binned into 10 respiratory phases, 4 image data sets were created; maximum intensity projection (MIP), average intensity projection (AIP), AIP with the ITV replaced by 0HU (RITV-AIP) and RITV-AIP with the planning target volume (PTV) minus the internal target volume was set to −200more » HU (HR-AIP). VMAT-SBRT plans were generated on each image set for a patient. 48Gy was prescribed to 95% of PTV. The plans were recalculated on all phase images of 4DCT and the dose distributions were accumulated using a deformable image registration software MIM Maestro™ as the 4D calculated dose to the gross tumor volume (GTV). The planned dose to the ITV and 4D calculated dose to the GTV were compared. Results: In AIP plan, 10 patients average of all dose parameters (D1%, D-mean, and D99%) discrepancy were 1Gy or smaller. MIP and RITV-AIP plans resulted in having common tendency and larger discrepancy than AIP plan. The 4D dose was lower than the planned dose, and 10 patients average of all dose parameters discrepancy were in range 1.3 to 2.6Gy. HR-AIP plan had the largest discrepancy in our trials. 4D calculated D1%, D-mean, and D99% were resulted in 3.0, 4.1, and 6.1Gy lower than the expected in plan, respectively. Conclusion: For all patients, the dose parameters expected in AIP plan approximated to 4D calculated. Using AIP image set seems optimal treatment planning approach of VMAT-SBRT for a mobile tumor. Funding Support: This work was supported by the Japan Society for the Promotion of Science Core-to-Core program (No. 23003)« less
  • Purpose: To commission the Monaco Treatment Planning System for the Novalis Tx machine. Methods: The commissioning of Monte-Carlo (MC), Collapsed Cone (CC) and electron Monte-Carlo (eMC) beam models was performed through a series of measurements and calculations in medium and in water. In medium measurements relied Octavius 4D QA system with the 1000 SRS detector array for field sizes less than 4 cm × 4 cm and the 1500 detector array for larger field sizes. Heterogeneity corrections were validated using a custom built phantom. Prior to clinical implementation, an end to end testing of a Prostate and H&N VMAT plansmore » was performed. Results: Using a 0.5% uncertainty and 2 mm grid sizes, Tables I and II summarize the MC validation at 6 MV and 18 MV in both medium and water. Tables III and IV show similar comparisons for CC. Using the custom heterogeneity phantom setup of Figure 1 and IGRT guidance summarized in Figure 2, Table V lists the percent pass rate for a 2%, 2 mm gamma criteria at 6 and 18 MV for both MC and CC. The relationship between MC calculations settings of uncertainty and grid size and the gamma passing rate for a prostate and H&N case is shown in Table VI. Table VII lists the results of the eMC calculations compared to measured data for clinically available applicators and Table VIII for small field cutouts. Conclusion: MU calculations using MC are highly sensitive to uncertainty and grid size settings. The difference can be of the order of several per cents. MC is superior to CC for small fields and when using heterogeneity corrections, regardless of field size, making it more suitable for SRS, SBRT and VMAT deliveries. eMC showed good agreement with measurements down to 2 cm − 2 cm field size.« less
  • Purpose: Due to the high dose per fraction in SBRT, dose conformity and dose fall-off are critical. In patients with cervical cancer, rapid dose fall-off is particularly important to limit dose to the nearby rectum, small bowel, and bladder. This study compares the target volume dose fall-off for two radiation delivery techniques, fixed-field IMRT & VMAT, using non-coplanar beam geometries. Further comparisons are made between 6 and 10MV photon beam energies. Methods: Eleven (n=11) patients were planned in Pinnacle3 v9.10 with a NovalisTx (HD120 MLC) machine model using 6 and 10 MV photons. The following three techniques were used: (1)more » IMRT (10 non-coplanar beams) (2) Dual, coplanar 360° VMAT arcs (4° spacing), and (3) Triple, non-coplanar VMAT arcs (1 full arc and dual partial arcs). All plans were normalized such that 98% of the PTV received at least 28Gy/4Fx. Dose was calculated using a 2.0mm isotropic dose grid. To assess dose fall-off, twenty concentric 2mm thick rings were created around the PTV. The maximum dose in each ring was recorded and the data was fitted to model dose fall-off. A separate analysis was performed by separating target volumes into small (0–50cc), medium (51–80cc), and large (81–110cc). Results: Triple, non-coplanar VMAT arcs showed the best dose fall-off for all patients evaluated. All fitted regressions had an R{sup 2}≥0.99. At 10mm from the PTV edge, 10 MV VMAT3-arc had an absolute improvement in dose fall-off of 3.8% and 6.9% over IMRT and VMAT2-arc, respectively. At 30mm, 10 MV VMAT3-arc had an absolute improvement of 12.0% and 7.0% over IMRT and VMAT2-arc, respectively. Faster dose fall-off was observed for small volumes as opposed to medium and large ones—9.6% at 20mm. Conclusion: Triple, non-coplanar VMAT arcs offer the sharpest dose fall-off for cervical SBRT plans. This improvement is most pronounced when treating smaller target volumes.« less
  • Purpose: In this study, the algorithms and calculation setting effect and contribution weighing on prostate Volumetric Modulated Arc Therapy (VMAT) based SBRT were evaluated for clinical analysis. Methods: A low risk prostate patient under SBRT was selected for the treatment planning evaluation. The treatment target was divided into low dose prescription target volume (PTV) and high Dose PTV. Normal tissue constraints include urethra and femur head, and rectum was separated into anterior, lateral and posterior parts. By varying the constraint limit of treatment plan calculation setting and algorithms, the effect on dose coverage and normal tissue dose constraint parameter carriedmore » effective comparison for the nominal prescription and constraint. For each setting, their percentage differences to the nominal value were calculated with geometric mean and harmonic mean. Results: In the arbitrary prostate SBRT case, 14 variables were selected for this evaluation by using nominal prescription and constraint. Six VMAT planning settings were anisotropic analytic algorithm stereotactic beam with and without couch structure in grid size of 1mm and 2mm, non stereotactic beam, Acuros algorithm . Their geometry means of the variable sets for these plans were 112.3%, 111.9%, 112.09%, 111.75%, 111.28%, and 112.05%. And the corresponding harmonic means were 2.02%, 2.16%, 3.15%, 4.74%, 5.47% and 5.55%. Conclusions: In this study, the algorithm difference shows relatively larger harmonic mean between prostate SBRT VMAT plans. This study provides a methodology to find sensitive combined variables related to clinical analysis, and similar approach could be applied to the whole treatment procedure from simulation to treatment in radiotherapy for big clinical data analysis.« less
  • Purpose: Due to limited commissioning time, we previously only released our True beam non-FFF mode for prostate treatment. Clinical demand now pushes us to release the non-FFF mode for SRT/SBRT treatment. When re-planning on True beam previously treated SRT/SBRT cases on iX machine we found the patient specific QA pass rate was worse than iX’s, though the 2Gy/fx prostate Result had been as good. We hypothesize that in TPS the True beam DLG and MLC transmission values, of those measured during commissioning could not yet provide accurate SRS/SBRT dosimetry. Hence this work is to investigate how the TPS DLG andmore » transmission value affects Rapid Arc plans’ dosimetric accuracy. Methods: We increased DLG and transmission value of True beam in TPS such that their percentage differences against the measured matched those of iX’s. We re-calculated 2 SRT, 1 SBRT and 2 prostate plans, performed patient specific QA on these new plans and compared the results to the previous. Results: With DLG and transmission value set respectively 40 and 8% higher than the measured, the patient specific QA pass rate (at 3%/3mm) improved from 95.0 to 97.6% vs previous iX’s 97.8% in the case of SRT. In the case of SBRT, the pass rate improved from 75.2 to 93.9% vs previous iX’s 92.5%. In the case of prostate, the pass rate improved from 99.3 to 100%. The maximum dose difference in plans before and after adjusting DLG and transmission was approximately 1% of the prescription dose among all plans. Conclusion: The impact of adjusting DLG and transmission value on dosimetry might be the same among all Rapid Arc plans regardless hypofractionated or not. The large variation observed in patient specific QA pass rate might be due to the data analysis method in the QA software being more sensitive to hypofractionated plans.« less