skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: SU-F-T-604: Dosimetric Evaluation of Intracranial Stereotactic Radiotherapy Plans On a LINAC

Abstract

Purpose: To evaluate the dosimetry of cranial stereotactic radiotherapy (SRT) plans of varying techniques on linac that meets appropriate TG-142 tolerances using 1 cm leaf width multileaf collimator (MLC). Methods: Seventeen spherical targets were generated in the center of a head phantom with diameters ranging 8 mm to 40 mm. SRT plans used 100° non-coplanar arcs and 5 couch angles with 35° spacing. The field size was target plus 1 mm margin. Four plans were created for each target: symmetrical jaws blocking for 5 arcs with 0° collimator (J1C), symmetrical jaws blocking with 5 clockwise arcs with 0° collimator and 5 counter-clockwise arcs with 45° collimator (J2C), MLC blocking for 5 dynamic conformal arcs with 0° collimator (M1C), and MLC blocking for 5 clockwise dynamic conformal arcs with 0° collimators and 5 counter-clockwise dynamic conformal arcs with 45° collimator (M2C).Conformity was evaluated using a ratio of Rx to target volume (PITV). Heterogeneity was determined using a ratio of maximum dose to Rx dose. Falloff was scored using CGIg: difference of effective radii of spheres equal to half and full Rx volumes. Results: All plans met RTOG SRS criteria for conformity and heterogeneity. The mean PITV was 1.52±0.07, 1.49±0.08, 1.39±0.05, andmore » 1.37±0.04 for J1C, J2C, M1C, and M2C plans respectively. The mean CGIg was 75.35±15.79, 74.19±16.66, 77.14±15.12, and 76.28±15.78 for J1C, J2C, M1C, and M2C plans respectively. The mean MDPD was 1.25±0.00 for all techniques. Conclusion: Clinically acceptable SRT plans for spherical targets were created on a linac with 1 cm MLC. Adding two collimator angles and MLC to arcs each improved conformity. The MLC improved the dose falloff while two collimator angles degraded it. This technique can expand the availability of SRT to patients especially to those who cannot travel to a facility with a dedicated stereotactic radiosurgery machine.« less

Authors:
; ; ; ; ; ;  [1]
  1. Bayonne Medical Center, Bayonne, NJ (United States)
Publication Date:
OSTI Identifier:
22649172
Resource Type:
Journal Article
Resource Relation:
Journal Name: Medical Physics; Journal Volume: 43; Journal Issue: 6; Other Information: (c) 2016 American Association of Physicists in Medicine; Country of input: International Atomic Energy Agency (IAEA)
Country of Publication:
United States
Language:
English
Subject:
60 APPLIED LIFE SCIENCES; 61 RADIATION PROTECTION AND DOSIMETRY; COLLIMATORS; DOSIMETRY; EVALUATION; LINEAR ACCELERATORS; RADIATION DOSES; RADIOTHERAPY; SPHERICAL CONFIGURATION

Citation Formats

Sheth, N, Tabibian, A, Rose, J, Alvelo, M, Perel, C, Laiken, K, and Kim, A. SU-F-T-604: Dosimetric Evaluation of Intracranial Stereotactic Radiotherapy Plans On a LINAC. United States: N. p., 2016. Web. doi:10.1118/1.4956789.
Sheth, N, Tabibian, A, Rose, J, Alvelo, M, Perel, C, Laiken, K, & Kim, A. SU-F-T-604: Dosimetric Evaluation of Intracranial Stereotactic Radiotherapy Plans On a LINAC. United States. doi:10.1118/1.4956789.
Sheth, N, Tabibian, A, Rose, J, Alvelo, M, Perel, C, Laiken, K, and Kim, A. 2016. "SU-F-T-604: Dosimetric Evaluation of Intracranial Stereotactic Radiotherapy Plans On a LINAC". United States. doi:10.1118/1.4956789.
@article{osti_22649172,
title = {SU-F-T-604: Dosimetric Evaluation of Intracranial Stereotactic Radiotherapy Plans On a LINAC},
author = {Sheth, N and Tabibian, A and Rose, J and Alvelo, M and Perel, C and Laiken, K and Kim, A},
abstractNote = {Purpose: To evaluate the dosimetry of cranial stereotactic radiotherapy (SRT) plans of varying techniques on linac that meets appropriate TG-142 tolerances using 1 cm leaf width multileaf collimator (MLC). Methods: Seventeen spherical targets were generated in the center of a head phantom with diameters ranging 8 mm to 40 mm. SRT plans used 100° non-coplanar arcs and 5 couch angles with 35° spacing. The field size was target plus 1 mm margin. Four plans were created for each target: symmetrical jaws blocking for 5 arcs with 0° collimator (J1C), symmetrical jaws blocking with 5 clockwise arcs with 0° collimator and 5 counter-clockwise arcs with 45° collimator (J2C), MLC blocking for 5 dynamic conformal arcs with 0° collimator (M1C), and MLC blocking for 5 clockwise dynamic conformal arcs with 0° collimators and 5 counter-clockwise dynamic conformal arcs with 45° collimator (M2C).Conformity was evaluated using a ratio of Rx to target volume (PITV). Heterogeneity was determined using a ratio of maximum dose to Rx dose. Falloff was scored using CGIg: difference of effective radii of spheres equal to half and full Rx volumes. Results: All plans met RTOG SRS criteria for conformity and heterogeneity. The mean PITV was 1.52±0.07, 1.49±0.08, 1.39±0.05, and 1.37±0.04 for J1C, J2C, M1C, and M2C plans respectively. The mean CGIg was 75.35±15.79, 74.19±16.66, 77.14±15.12, and 76.28±15.78 for J1C, J2C, M1C, and M2C plans respectively. The mean MDPD was 1.25±0.00 for all techniques. Conclusion: Clinically acceptable SRT plans for spherical targets were created on a linac with 1 cm MLC. Adding two collimator angles and MLC to arcs each improved conformity. The MLC improved the dose falloff while two collimator angles degraded it. This technique can expand the availability of SRT to patients especially to those who cannot travel to a facility with a dedicated stereotactic radiosurgery machine.},
doi = {10.1118/1.4956789},
journal = {Medical Physics},
number = 6,
volume = 43,
place = {United States},
year = 2016,
month = 6
}
  • Purpose: To evaluate the dosimetry of cranial stereotactic radiotherapy (SRT) plans using jaws-only collimation on linac that meets appropriate TG-142 tolerances. Methods: Seventeen spherical targets were generated in the center of a head phantom with diameters ranging from 8 mm to 40 mm. Plans balanced treatment time with dose gradient and conformity using 13 static fields and 3 couch angles: 9 non-opposed and coplanar fields and 4 non-coplanar fields. The symmetrical jaws field size was target diameter plus 2 mm. The prescription (Rx) was 7 Gy per fraction to the 80% isodose line. Two plans were created for each target:more » one kept the collimator at 0° (C0), one adjusted the collimator angle 40° for each field to create a 360° sweep over the 9 coplanar fields (CR).Conformity of the Rx to the target was evaluated using a ratio of Rx to target volume (PITV). Heterogeneity was determined using a ratio of maximum dose to Rx dose. Falloff was scored using CGIg: the difference of effective radii of spheres equal to half and full Rx volumes. Results: All plans met RTOG SRS criteria for conformity and heterogeneity. The use of collimator rotation improved conformity by 3.2% on average, the mean PITV was 1.7±0.1 for C0 plans and 1.6±0.1 for CR. Mean heterogeneity was 1.25±0.0 for both C0 and CR. The mean CGIg was 75.9±16.4 for C0 plans and 74.4±17.0 for CR; with a mean dose falloff degradation of 2.5% by CR. Conclusion: Clinically acceptable SRT plans for spherical targets were created using jaws-only collimation with static fields. The addition of sweeping collimator rotation improves conformity at the expense of gradient. This technique can expand the availability of SRT to patients especially to those who cannot travel to a facility with a dedicated stereotactic radiosurgery machine.« less
  • Purpose: To evaluate dose conformity, dose homogeneity, and dose gradient in helical tomotherapy treatment plans for stereotactic radiosurgery, and compare results with step-and-shoot intensity-modulated radiosurgery (IMRS) treatment plans. Methods and Materials: Sixteen patients were selected with a mean tumor size of 14.65 {+-} 11.2 cm{sup 3}. Original step-and-shoot IMRS treatment plans used coplanar fields because of the constraint of the beam stopper. Retrospective step-and-shoot IMRS plans were generated using noncoplanar fields. Helical tomotherapy treatment plans were generated using the tomotherapy planning station. Dose conformity index, dose gradient score index, and homogeneity index were used in plan intercomparisons. Results: Noncoplanar IMRSmore » plans increased dose conformity and dose gradient, but not dose homogeneity, compared with coplanar IMRS plans. Tomotherapy plans increased dose conformity and dose gradient, yet increased dose heterogeneity compared with noncoplanar IMRS plans. The average dose conformity index values were 1.53 {+-} 0.38, 1.35 {+-} 0.15, and 1.26 {+-} 0.10 in coplanar IMRS, noncoplanar IMRS, and tomotherapy plans, respectively. The average dose homogeneity index values were 1.15 {+-} 0.05, 1.13 {+-} 0.04, and 1.18 {+-} 0.09 in coplanar IMRS, noncoplanar IMRS, and tomotherapy plans, respectively. The mean dose gradient score index values were 1.37 {+-} 19.08, 22.32 {+-} 19.20, and 43.28 {+-} 13.78 in coplanar IMRS, noncoplanar IMRS, and tomotherapy plans, respectively. The mean treatment time in tomotherapy was 42 {+-} 16 min. Conclusions: We were able to achieve better dose conformity and dose gradient in tomotherapy plans compared with step-and-shoot IMRS plans for intracranial stereotactic radiosurgery. However, tomotherapy treatment time was significantly larger than that in step-and-shoot IMRS.« less
  • Purpose: To evaluate, with a dosimetric and clinical feasibility study, RapidArc (a volumetric modulated arc technique) for hypofractionated stereotactic radiotherapy treatment of large arteriovenous malformations (AVMs). Methods and Materials: Nine patients were subject to multimodality imaging (magnetic resonance, computed tomography, and digital subtraction angiography) to determine nidus and target volumes, as well as involved organs at risk (optical structures, inner ear, brain stem). Plans for multiple intensity-modulated arcs with a single isocenter were optimized for a fractionation of 25 Gy in 5 fractions. All plans were optimized for 6-MV photon beams. Dose-volume histograms were analyzed to assess plan quality. Deliverymore » parameters were reported to appraise technical features of RapidArc, and pretreatment quality assurance measurements were carried out to report on quality of delivery. Results: Average size of AVM nidus was 26.2 cm{sup 3}, and RapidArc plans provided complete target coverage with minimal overdosage (V{sub 100%} = 100% and V{sub 110%} < 1%) and excellent homogeneity (<6%). Organs at risk were highly spared. The D{sub 1%} to chiasm, eyes, lenses, optic nerves, and brainstem (mean {+-} SD) was 6.4 {+-} 8.3, 1.9 {+-} 3.8, 2.3 {+-} 2.2, 0.7 {+-} 0.9, 4.4 {+-} 7.2, 12.2 {+-} 9.6 Gy, respectively. Conformity index (CI{sub 95%}) was 2.2 {+-} 0.1. The number of monitor units per gray was 277 {+-} 45, total beam-on time was 2.5 {+-} 0.3 min. Planning vs. delivery {gamma} pass rate was 98.3% {+-} 0.9%. None of the patients developed acute toxicity. With a median follow-up of 9 months, 3 patients presented with deterioration of symptoms and were found to have postradiation changes but responded symptomatically to steroids. These patients continue to do well on follow-up. One patient developed headache and seizures, which was attributed to intracranial bleed, confirmed on imaging. Conclusion: Hypofractionated stereotactic radiotherapy can be successfully delivered using the RapidArc form of volumetric arc technology for intracranial AVMs. The quality of delivery and calculated parameters are in agreement with each other and are in line with published reports for other sites.« less
  • Purpose: The recently activated Radiation Therapy Oncology Group (RTOG) studies of stereotactic body radiation therapy (SBRT) for non-small-cell lung cancer (NSCLC) require tissue density heterogeneity correction, where the high and intermediate dose compliance criteria were established based on superposition algorithm dose calculations. The study was aimed at comparing superposition algorithm dose calculations with Monte Carlo (MC) dose calculations for SBRT for NSCLC and to evaluate whether compliance criteria need to be adjusted for MC dose calculations. Methods and Materials: Fifteen RTOG 0236 study sets were used. The planning tumor volumes (PTV) ranged from 10.7 to 117.1 cm{sup 3}. SBRT conformalmore » treatment plans were generated using XiO (CMS Inc.) treatment planning software with superposition algorithm to meet the dosimetric high and intermediate compliance criteria recommended by the RTOG 0813 protocol. Plans were recalculated using the MC algorithm of a Monaco (CMS, Inc.) treatment planning system. Tissue density heterogeneity correction was applied in both calculations. Results: Overall, the dosimetric quantities of the MC calculations have larger magnitudes than those of the superposition calculations. On average, R{sub 100%} (ratio of prescription isodose volume to PTV), R{sub 50%} (ratio of 50% prescription isodose volume to PTV), D{sub 2cm} (maximal dose 2 cm from PTV in any direction as a percentage of prescription dose), and V{sub 20} (percentage of lung receiving dose equal to or larger than 20 Gy) increased by 9%, 12%, 7%, and 18%, respectively. In the superposition plans, 3 cases did not meet criteria for R{sub 50%} or D{sub 2cm}. In the MC-recalculated plans, 8 cases did not meet criteria for R{sub 100%}, R{sub 50%}, or D{sub 2cm}. After reoptimization with MC calculations, 5 cases did not meet the criteria for R{sub 50%} or D{sub 2cm}. Conclusions: Results indicate that the dosimetric criteria, e.g., the criteria for R{sub 50%} recommended by RTOG 0813 protocol, may need to be adjusted when the MC dose calculation algorithm is used.« less
  • Purpose: To evaluate the geometric positioning and immobilization performance of a vacuum bite-block repositioning head frame (RHF) system for Perfexion (PFX-SRT) and linac-based intracranial image-guided stereotactic radiotherapy (SRT). Methods and Materials: Patients with intracranial tumors received linac-based image-guided SRT using the RHF for setup and immobilization. Three hundred thirty-three fractions of radiation were delivered in 12 patients. The accuracy of the RHF was estimated for linac-based SRT with online cone-beam CT (CBCT) and for PFX-SRT with a repositioning check tool (RCT) and offline CBCT. The RCT's ability to act as a surrogate for anatomic position was estimated through comparison tomore » CBCT image matching. Immobilization performance was evaluated daily with pre- and postdose delivery CBCT scans and RCT measurements. Results: The correlation coefficient between RCT- and CBCT-reported displacements was 0.59, 0.75, 0.79 (Right, Superior, and Anterior, respectively). For image-guided linac-based SRT, the mean three-dimensional (3D) setup error was 0.8 mm with interpatient ({Sigma}) and interfraction ({sigma}) variations of 0.1 and 0.4 mm, respectively. For PFX-SRT, the initial, uncorrected mean 3D positioning displacement in stereotactic coordinates was 2.0 mm, with {Sigma} = 1.1 mm and {sigma} = 0.8 mm. Considering only RCT setups <1mm (PFX action level) the mean 3D positioning displacement reduced to 1.3 mm, with {Sigma} = 0.9 mm and {sigma} = 0.4 mm. The largest contributing systematic uncertainty was in the superior-inferior direction (mean displacement = -0.5 mm; {Sigma} = 0.9 mm). The largest mean rotation was 0.6{sup o} in pitch. The mean 3D intrafraction motion was 0.4 {+-} 0.3 mm. Conclusion: The RHF provides excellent immobilization for intracranial SRT and PFX-SRT. Some small systematic uncertainties in stereotactic positioning exist and must be considered when generating PFX-SRT treatment plans. The RCT provides reasonable surrogacy for internal anatomic displacement.« less